File size: 11,622 Bytes
a560c26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
# coding=utf-8
# Copyright 2023 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Initializers module library for equivariant slot attention."""

import functools
from typing import Any, Dict, Iterable, Mapping, Optional, Sequence, Tuple, Union

from flax import linen as nn
import jax
import jax.numpy as jnp
from invariant_slot_attention.lib import utils

Shape = Tuple[int]

DType = Any
Array = Any  # jnp.ndarray
ArrayTree = Union[Array, Iterable["ArrayTree"], Mapping[str, "ArrayTree"]]  # pytype: disable=not-supported-yet
ProcessorState = ArrayTree
PRNGKey = Array
NestedDict = Dict[str, Any]


def get_uniform_initializer(vmin, vmax):
  """Get an uniform initializer with an arbitrary range."""
  init = nn.initializers.uniform(scale=vmax - vmin)

  def fn(*args, **kwargs):
    return init(*args, **kwargs) + vmin

  return fn


def get_normal_initializer(mean, sd):
  """Get a normal initializer with an arbitrary mean."""
  init = nn.initializers.normal(stddev=sd)

  def fn(*args, **kwargs):
    return init(*args, **kwargs) + mean

  return fn


class ParamStateInitRandomPositions(nn.Module):
  """Fixed, learnable state initalization with random positions.

  Random slot positions sampled from U[-1, 1] are concatenated
    as the last two dimensions.
  Note: This module ignores any conditional input (by design).
  """

  shape: Sequence[int]
  init_fn: str = "normal"  # Default init with unit variance.
  conditioning_key: Optional[str] = None
  slot_positions_min: float = -1.
  slot_positions_max: float = 1.

  @nn.compact
  def __call__(self, inputs, batch_size,
               train = False):
    del inputs, train  # Unused.

    if self.init_fn == "normal":
      init_fn = functools.partial(nn.initializers.normal, stddev=1.)
    elif self.init_fn == "zeros":
      init_fn = lambda: nn.initializers.zeros
    else:
      raise ValueError("Unknown init_fn: {}.".format(self.init_fn))

    param = self.param("state_init", init_fn(), self.shape)

    out = utils.broadcast_across_batch(param, batch_size=batch_size)
    shape = out.shape[:-1]
    rng = self.make_rng("state_init")
    slot_positions = jax.random.uniform(
        rng, shape=[*shape, 2], minval=self.slot_positions_min,
        maxval=self.slot_positions_max)
    out = jnp.concatenate((out, slot_positions), axis=-1)
    return out


class ParamStateInitLearnablePositions(nn.Module):
  """Fixed, learnable state initalization with learnable positions.

  Learnable initial positions are concatenated at the end of slots.
  Note: This module ignores any conditional input (by design).
  """

  shape: Sequence[int]
  init_fn: str = "normal"  # Default init with unit variance.
  conditioning_key: Optional[str] = None
  slot_positions_min: float = -1.
  slot_positions_max: float = 1.

  @nn.compact
  def __call__(self, inputs, batch_size,
               train = False):
    del inputs, train  # Unused.

    if self.init_fn == "normal":
      init_fn_state = functools.partial(nn.initializers.normal, stddev=1.)
    elif self.init_fn == "zeros":
      init_fn_state = lambda: nn.initializers.zeros
    else:
      raise ValueError("Unknown init_fn: {}.".format(self.init_fn))

    init_fn_state = init_fn_state()
    init_fn_pos = get_uniform_initializer(
        self.slot_positions_min, self.slot_positions_max)

    param_state = self.param("state_init", init_fn_state, self.shape)
    param_pos = self.param(
        "state_init_position", init_fn_pos, (*self.shape[:-1], 2))

    param = jnp.concatenate((param_state, param_pos), axis=-1)

    return utils.broadcast_across_batch(param, batch_size=batch_size)  # pytype: disable=bad-return-type  # jax-ndarray


class ParamStateInitRandomPositionsScales(nn.Module):
  """Fixed, learnable state initalization with random positions and scales.

  Random slot positions and scales sampled from U[-1, 1] and N(0.1, 0.1)
    are concatenated as the last four dimensions.
  Note: This module ignores any conditional input (by design).
  """

  shape: Sequence[int]
  init_fn: str = "normal"  # Default init with unit variance.
  conditioning_key: Optional[str] = None
  slot_positions_min: float = -1.
  slot_positions_max: float = 1.
  slot_scales_mean: float = 0.1
  slot_scales_sd: float = 0.1

  @nn.compact
  def __call__(self, inputs, batch_size,
               train = False):
    del inputs, train  # Unused.

    if self.init_fn == "normal":
      init_fn = functools.partial(nn.initializers.normal, stddev=1.)
    elif self.init_fn == "zeros":
      init_fn = lambda: nn.initializers.zeros
    else:
      raise ValueError("Unknown init_fn: {}.".format(self.init_fn))

    param = self.param("state_init", init_fn(), self.shape)

    out = utils.broadcast_across_batch(param, batch_size=batch_size)
    shape = out.shape[:-1]
    rng = self.make_rng("state_init")
    slot_positions = jax.random.uniform(
        rng, shape=[*shape, 2], minval=self.slot_positions_min,
        maxval=self.slot_positions_max)
    slot_scales = jax.random.normal(rng, shape=[*shape, 2])
    slot_scales = self.slot_scales_mean + self.slot_scales_sd * slot_scales
    out = jnp.concatenate((out, slot_positions, slot_scales), axis=-1)
    return out


class ParamStateInitLearnablePositionsScales(nn.Module):
  """Fixed, learnable state initalization with random positions and scales.

  Lernable initial positions and scales are concatenated at the end of slots.
  Note: This module ignores any conditional input (by design).
  """

  shape: Sequence[int]
  init_fn: str = "normal"  # Default init with unit variance.
  conditioning_key: Optional[str] = None
  slot_positions_min: float = -1.
  slot_positions_max: float = 1.
  slot_scales_mean: float = 0.1
  slot_scales_sd: float = 0.01

  @nn.compact
  def __call__(self, inputs, batch_size,
               train = False):
    del inputs, train  # Unused.

    if self.init_fn == "normal":
      init_fn_state = functools.partial(nn.initializers.normal, stddev=1.)
    elif self.init_fn == "zeros":
      init_fn_state = lambda: nn.initializers.zeros
    else:
      raise ValueError("Unknown init_fn: {}.".format(self.init_fn))

    init_fn_state = init_fn_state()
    init_fn_pos = get_uniform_initializer(
        self.slot_positions_min, self.slot_positions_max)
    init_fn_scales = get_normal_initializer(
        self.slot_scales_mean, self.slot_scales_sd)

    param_state = self.param("state_init", init_fn_state, self.shape)
    param_pos = self.param(
        "state_init_position", init_fn_pos, (*self.shape[:-1], 2))
    param_scales = self.param(
        "state_init_scale", init_fn_scales, (*self.shape[:-1], 2))

    param = jnp.concatenate((param_state, param_pos, param_scales), axis=-1)

    return utils.broadcast_across_batch(param, batch_size=batch_size)  # pytype: disable=bad-return-type  # jax-ndarray


class ParamStateInitLearnablePositionsRotationsScales(nn.Module):
  """Fixed, learnable state initalization.

  Learnable initial positions, rotations and  scales are concatenated
    at the end of slots. The rotation matrix is flattened.
  Note: This module ignores any conditional input (by design).
  """

  shape: Sequence[int]
  init_fn: str = "normal"  # Default init with unit variance.
  conditioning_key: Optional[str] = None
  slot_positions_min: float = -1.
  slot_positions_max: float = 1.
  slot_scales_mean: float = 0.1
  slot_scales_sd: float = 0.01
  slot_angles_mean: float = 0.
  slot_angles_sd: float = 0.1

  @nn.compact
  def __call__(self, inputs, batch_size,
               train = False):
    del inputs, train  # Unused.

    if self.init_fn == "normal":
      init_fn_state = functools.partial(nn.initializers.normal, stddev=1.)
    elif self.init_fn == "zeros":
      init_fn_state = lambda: nn.initializers.zeros
    else:
      raise ValueError("Unknown init_fn: {}.".format(self.init_fn))

    init_fn_state = init_fn_state()
    init_fn_pos = get_uniform_initializer(
        self.slot_positions_min, self.slot_positions_max)
    init_fn_scales = get_normal_initializer(
        self.slot_scales_mean, self.slot_scales_sd)
    init_fn_angles = get_normal_initializer(
        self.slot_angles_mean, self.slot_angles_sd)

    param_state = self.param("state_init", init_fn_state, self.shape)
    param_pos = self.param(
        "state_init_position", init_fn_pos, (*self.shape[:-1], 2))
    param_scales = self.param(
        "state_init_scale", init_fn_scales, (*self.shape[:-1], 2))
    param_angles = self.param(
        "state_init_angles", init_fn_angles, (*self.shape[:-1], 1))

    # Initial angles in the range of (-pi / 4, pi / 4) <=> (-45, 45) degrees.
    angles = jnp.tanh(param_angles) * (jnp.pi / 4)
    rotm = jnp.concatenate(
        [jnp.cos(angles), jnp.sin(angles),
         -jnp.sin(angles), jnp.cos(angles)], axis=-1)

    param = jnp.concatenate(
        (param_state, param_pos, param_scales, rotm), axis=-1)

    return utils.broadcast_across_batch(param, batch_size=batch_size)  # pytype: disable=bad-return-type  # jax-ndarray


class ParamStateInitRandomPositionsRotationsScales(nn.Module):
  """Fixed, learnable state initialization with random pos., rot. and scales.

  Random slot positions and scales sampled from U[-1, 1] and N(0.1, 0.1)
    are concatenated as the last four dimensions. Rotations are sampled
    from +- 45 degrees.
  Note: This module ignores any conditional input (by design).
  """

  shape: Sequence[int]
  init_fn: str = "normal"  # Default init with unit variance.
  conditioning_key: Optional[str] = None
  slot_positions_min: float = -1.
  slot_positions_max: float = 1.
  slot_scales_mean: float = 0.1
  slot_scales_sd: float = 0.1
  slot_angles_min: float = -jnp.pi / 4.
  slot_angles_max: float = jnp.pi / 4.

  @nn.compact
  def __call__(self, inputs, batch_size,
               train = False):
    del inputs, train  # Unused.

    if self.init_fn == "normal":
      init_fn = functools.partial(nn.initializers.normal, stddev=1.)
    elif self.init_fn == "zeros":
      init_fn = lambda: nn.initializers.zeros
    else:
      raise ValueError("Unknown init_fn: {}.".format(self.init_fn))

    param = self.param("state_init", init_fn(), self.shape)

    out = utils.broadcast_across_batch(param, batch_size=batch_size)
    shape = out.shape[:-1]
    rng = self.make_rng("state_init")
    slot_positions = jax.random.uniform(
        rng, shape=[*shape, 2], minval=self.slot_positions_min,
        maxval=self.slot_positions_max)
    rng = self.make_rng("state_init")
    slot_scales = jax.random.normal(rng, shape=[*shape, 2])
    slot_scales = self.slot_scales_mean + self.slot_scales_sd * slot_scales
    rng = self.make_rng("state_init")
    slot_angles = jax.random.uniform(rng, shape=[*shape, 1])
    slot_angles = (slot_angles * (self.slot_angles_max - self.slot_angles_min)
                   ) + self.slot_angles_min
    slot_rotm = jnp.concatenate(
        [jnp.cos(slot_angles), jnp.sin(slot_angles),
         -jnp.sin(slot_angles), jnp.cos(slot_angles)], axis=-1)
    out = jnp.concatenate(
        (out, slot_positions, slot_scales, slot_rotm), axis=-1)
    return out