File size: 5,623 Bytes
a560c26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
# coding=utf-8
# Copyright 2023 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Convolutional module library."""

import functools
from typing import Any, Callable, Dict, Iterable, Mapping, Optional, Sequence, Tuple, Union

from flax import linen as nn
import jax

Shape = Tuple[int]

DType = Any
Array = Any  # jnp.ndarray
ArrayTree = Union[Array, Iterable["ArrayTree"], Mapping[str, "ArrayTree"]]  # pytype: disable=not-supported-yet
ProcessorState = ArrayTree
PRNGKey = Array
NestedDict = Dict[str, Any]


class SimpleCNN(nn.Module):
  """Simple CNN encoder with multiple Conv+ReLU layers."""

  features: Sequence[int]
  kernel_size: Sequence[Tuple[int, int]]
  strides: Sequence[Tuple[int, int]]
  transpose: bool = False
  use_batch_norm: bool = False
  axis_name: Optional[str] = None  # Over which axis to aggregate batch stats.
  padding: Union[str, Iterable[Tuple[int, int]]] = "SAME"
  resize_output: Optional[Iterable[int]] = None

  @nn.compact
  def __call__(self, inputs, train = False):
    num_layers = len(self.features)
    assert len(self.kernel_size) == num_layers, (
        "len(kernel_size) and len(features) must match.")
    assert len(self.strides) == num_layers, (
        "len(strides) and len(features) must match.")
    assert num_layers >= 1, "Need to have at least one layer."

    if self.transpose:
      conv_module = nn.ConvTranspose
    else:
      conv_module = nn.Conv

    x = conv_module(
        name="conv_simple_0",
        features=self.features[0],
        kernel_size=self.kernel_size[0],
        strides=self.strides[0],
        use_bias=False if self.use_batch_norm else True,
        padding=self.padding)(inputs)

    for i in range(1, num_layers):
      if self.use_batch_norm:
        x = nn.BatchNorm(
            momentum=0.9, use_running_average=not train,
            axis_name=self.axis_name, name=f"bn_simple_{i-1}")(x)

      x = nn.relu(x)
      x = conv_module(
          name=f"conv_simple_{i}",
          features=self.features[i],
          kernel_size=self.kernel_size[i],
          strides=self.strides[i],
          use_bias=False if (
              self.use_batch_norm and i < (num_layers-1)) else True,
          padding=self.padding)(x)

    if self.resize_output:
      x = jax.image.resize(
          x, list(x.shape[:-3]) + list(self.resize_output) + [x.shape[-1]],
          method=jax.image.ResizeMethod.LINEAR)
    return x


class CNN(nn.Module):
  """Flexible CNN model with Conv/Normalization/Pooling layers."""

  features: Sequence[int]
  kernel_size: Sequence[Tuple[int, int]]
  strides: Sequence[Tuple[int, int]]
  max_pool_strides: Sequence[Tuple[int, int]]
  layer_transpose: Sequence[bool]
  activation_fn: Callable[[Array], Array] = nn.relu
  norm_type: Optional[str] = None
  axis_name: Optional[str] = None  # Over which axis to aggregate batch stats.
  output_size: Optional[int] = None

  @nn.compact
  def __call__(self, inputs, train = False):
    num_layers = len(self.features)

    assert num_layers >= 1, "Need to have at least one layer."
    assert len(self.kernel_size) == num_layers, (
        "len(kernel_size) and len(features) must match.")
    assert len(self.strides) == num_layers, (
        "len(strides) and len(features) must match.")
    assert len(self.max_pool_strides) == num_layers, (
        "len(max_pool_strides) and len(features) must match.")
    assert len(self.layer_transpose) == num_layers, (
        "len(layer_transpose) and len(features) must match.")

    if self.norm_type:
      assert self.norm_type in {"batch", "group", "instance", "layer"}, (
          f"{self.norm_type} is unrecognizaed normalization")

    # Whether transpose conv or regular conv.
    conv_module = {False: nn.Conv, True: nn.ConvTranspose}

    if self.norm_type == "batch":
      norm_module = functools.partial(
          nn.BatchNorm, momentum=0.9, use_running_average=not train,
          axis_name=self.axis_name)
    elif self.norm_type == "group":
      norm_module = functools.partial(
          nn.GroupNorm, num_groups=32)
    elif self.norm_type == "layer":
      norm_module = nn.LayerNorm

    x = inputs
    for i in range(num_layers):
      x = conv_module[self.layer_transpose[i]](
          name=f"conv_{i}",
          features=self.features[i],
          kernel_size=self.kernel_size[i],
          strides=self.strides[i],
          use_bias=False if self.norm_type else True)(x)

      # Normalization layer.
      if self.norm_type:
        if self.norm_type == "instance":
          x = nn.GroupNorm(
              num_groups=self.features[i],
              name=f"{self.norm_type}_norm_{i}")(x)
        else:
          norm_module(name=f"{self.norm_type}_norm_{i}")(x)

      # Activation layer.
      x = self.activation_fn(x)

      # Max pooling layer.
      x = x if self.max_pool_strides[i] == (1, 1) else nn.max_pool(
          x, self.max_pool_strides[i], strides=self.max_pool_strides[i],
          padding="SAME")

    # Final dense layer.
    if self.output_size:
      x = nn.Dense(self.output_size, name="output_layer", use_bias=True)(x)
    return x