File size: 6,478 Bytes
d819573
 
50b6ccf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d819573
 
 
 
 
 
 
50b6ccf
 
 
 
 
 
d819573
 
50b6ccf
d819573
 
 
 
 
50b6ccf
d819573
50b6ccf
d819573
50b6ccf
 
d819573
50b6ccf
 
 
 
 
d819573
 
 
 
 
94eeb73
50b6ccf
 
 
94eeb73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d819573
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
import gradio as gr
from huggingface_hub import InferenceClient
from typing import TypedDict, Dict
from langgraph.graph import StateGraph, END
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.runnables.graph import MermaidDrawMethod
from IPython.display import display, Image

class State(TypedDict):
    query: str
    category: str
    sentiment: str
    response: str

from langchain_groq import ChatGroq

llm = ChatGroq(
    temperature=0,
    groq_api_key="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",
    model_name="llama-3.3-70b-versatile"
)


def categorize(state: State) -> State:
    """Categorize the query."""
    prompt = ChatPromptTemplate.from_template(
        "Categorize the following customer query into one of these categories: "
        "Technical, Billing, General. Query: {query}"
    )
    chain = prompt | llm
    category = chain.invoke({"query": state["query"]}).content
    return {"category": category}

def analyze_sentiment(state: State) -> State:
    """Analyze sentiment of the query."""
    prompt = ChatPromptTemplate.from_template(
        "Analyze the sentiment of the following customer query "
        "Response with either 'Positive', 'Neutral', or 'Negative'. Query: {query}"
    )
    chain = prompt | llm
    sentiment = chain.invoke({"query": state["query"]}).content
    return {"sentiment": sentiment}

def handle_technical(state: State) -> State:
    """Handle technical queries."""
    prompt = ChatPromptTemplate.from_template(
        "Provide a technical support response to the following query: {query}"
    )
    chain = prompt | llm
    response = chain.invoke({"query": state["query"]}).content
    return {"response": response}

def handle_billing(state: State) -> State:
    """Handle billing queries."""
    prompt = ChatPromptTemplate.from_template(
        "Provide a billing support response to the following query: {query}"
    )
    chain = prompt | llm
    response = chain.invoke({"query": state["query"]}).content
    return {"response": response}

def handle_general(state: State) -> State:
    """Handle general queries."""
    prompt = ChatPromptTemplate.from_template(
        "Provide a general support response to the following query: {query}"
    )
    chain = prompt | llm
    response = chain.invoke({"query": state["query"]}).content
    return {"response": response}

def escalate(state: State) -> State:
    """Escalate negative sentiment queries."""
    return {"response": "This query has been escalated to a human agent due to its negative sentiment."}

def route_query(state: State) -> State:
    """Route query based on category and sentiment."""
    if state["sentiment"] == "Negative":
        return "escalate"
    elif state["category"] == "Technical":
        return "handle_technical"
    elif state["category"] == "Billing":
        return "handle_billing"
    else:
        return "handle_general"

workflow = StateGraph(State)

workflow.add_node("categorize", categorize)
workflow.add_node("analyze_sentiment", analyze_sentiment)
workflow.add_node("handle_technical", handle_technical)
workflow.add_node("handle_billing", handle_billing)
workflow.add_node("handle_general", handle_general)
workflow.add_node("escalate", escalate)

workflow.add_edge("categorize", "analyze_sentiment")
workflow.add_conditional_edges(
    "analyze_sentiment",
    route_query, {
        "handle_technical": "handle_technical",
        "handle_billing": "handle_billing",
        "handle_general": "handle_general",
        "escalate": "escalate"
    }
)

workflow.add_edge("handle_technical", END)
workflow.add_edge("handle_billing", END)
workflow.add_edge("handle_general", END)
workflow.add_edge("escalate", END)

workflow.set_entry_point("categorize")

app = workflow.compile()

# Define the function that integrates the workflow.
def run_customer_support(query: str) -> Dict[str, str]:
    results = app.invoke({"query": query})
    return {
        "Category": results['category'],
        "Sentiment": results['sentiment'],
        "Response": results['response']
    }


"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")

def respond(
    message, 
    history: list[tuple[str, str]], 
    system_message, 
    max_tokens, 
    temperature, 
    top_p
):
    messages = [{"role": "system", "content": system_message}]
    
    for val in history:
        if val[0]:
            messages.append({"role": "user", "content": val[0]})
        if val[1]:
            messages.append({"role": "assistant", "content": val[1]})
    
    messages.append({"role": "user", "content": message})
    
    response = ""
    
    # Simulate streaming from the client
    for message in client.chat_completion(
        messages, 
        max_tokens=max_tokens, 
        stream=True, 
        temperature=temperature, 
        top_p=top_p
    ):
        token = message.choices[0].delta.content
        response += token
        yield response

# Define a custom Gradio Chat Interface with hidden sliders
with gr.Blocks() as demo:
    gr.Markdown("### AI-Powered Customer Support Assistant")
    
    chatbot = gr.ChatInterface(
        respond, 
        additional_inputs=[
            gr.Textbox(
                value="You are a friendly chatbot.",
                label="System Message",
                info="Customize how the assistant behaves in conversations."
            ),
            gr.Slider(
                minimum=1, 
                maximum=2048, 
                value=512, 
                step=1, 
                label="Max New Tokens",
                visible=False
            ),
            gr.Slider(
                minimum=0.1, 
                maximum=4.0, 
                value=0.7, 
                step=0.1, 
                label="Temperature",
                visible=False
            ),
            gr.Slider(
                minimum=0.1, 
                maximum=1.0, 
                value=0.95, 
                step=0.05, 
                label="Top-p (Nucleus Sampling)",
                visible=False
            ),
        ]
    )
    
    gr.Markdown("### Instructions")
    gr.Textbox(
        value="Enter your query, select response settings, and start the conversation.",
        interactive=False,
    )

if __name__ == "__main__":
    demo.launch()