File size: 7,645 Bytes
491eded
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
import os
import imageio
import torch
from modules.part_synthesis.utils import render_utils, postprocessing_utils
from modules.part_synthesis.representations.gaussian.gaussian_model import Gaussian


def save_parts_outputs(outputs, output_dir, simplify_ratio, save_video=True, save_glb=True, textured=True):
    os.makedirs(output_dir, exist_ok=True)

    # num_parts = min(len(outputs['gaussian']), len(outputs['radiance_field']), len(outputs['mesh']))
    num_parts = min(len(outputs['gaussian']), len(outputs['mesh']))
    gs_list = []
    
    for i in range(num_parts):
        if i == 0:
            continue
        if save_video:
            video = render_utils.render_video(outputs['gaussian'][i])['color']
            gaussian_video_path = f"{output_dir}/part{i}_gs_text.mp4"
            if os.path.exists(gaussian_video_path):
                os.remove(gaussian_video_path)
            imageio.mimsave(gaussian_video_path, video, fps=30)
            
            video = render_utils.render_video(outputs['radiance_field'][i])['color']
            rf_video_path = f"{output_dir}/part{i}_rf_text.mp4"
            if os.path.exists(rf_video_path):
                os.remove(rf_video_path)
            imageio.mimsave(rf_video_path, video, fps=30)
            
            video = render_utils.render_video(outputs['mesh'][i])['normal']
            mesh_video_path = f"{output_dir}/part{i}_mesh_text.mp4"
            if os.path.exists(mesh_video_path):
                os.remove(mesh_video_path)
            imageio.mimsave(mesh_video_path, video, fps=30)
            
        if save_glb:
            glb = postprocessing_utils.to_glb(
                outputs['gaussian'][i],
                outputs['mesh'][i],
                simplify=simplify_ratio,  # Mesh simplification factor
                texture_size=1024,
                textured=textured,
            )
            if glb is None:
                continue
            glb_path = f"{output_dir}/part{i}.glb"
            if os.path.exists(glb_path):
                os.remove(glb_path)
            glb.export(glb_path)
            
            if i == 0:
                ply_path = f"{output_dir}/part{i}_gs.ply"
                if os.path.exists(ply_path):
                    os.remove(ply_path)
                outputs['gaussian'][i].save_ply(ply_path)
            else:
                gs_list.append(outputs['gaussian'][i])
                
    merged_gaussian = merge_gaussians(gs_list)
    merged_gaussian.save_ply(f"{output_dir}/merged_gs.ply")
    
    exploded_gs = exploded_gaussians(gs_list, explosion_scale=0.3)
    exploded_gs.save_ply(f"{output_dir}/exploded_gs.ply")


def merge_gaussians(gaussians_list):
    if not gaussians_list:
        raise ValueError("gaussians_list is empty")

    first_gaussian = gaussians_list[0]
    merged_gaussian = Gaussian(**first_gaussian.init_params, device=first_gaussian.device)
    
    xyz_list = []
    features_dc_list = []
    features_rest_list = []
    scaling_list = []
    rotation_list = []
    opacity_list = []
    
    for gaussian in gaussians_list:
        if (gaussian.sh_degree != first_gaussian.sh_degree or 
            not torch.allclose(gaussian.aabb, first_gaussian.aabb)):
            raise ValueError("All Gaussian objects must have the same sh_degree and aabb parameters")
            
        if gaussian._xyz is not None:
            xyz_list.append(gaussian._xyz)
        if gaussian._features_dc is not None:
            features_dc_list.append(gaussian._features_dc)
        if gaussian._features_rest is not None:
            features_rest_list.append(gaussian._features_rest)
        if gaussian._scaling is not None:
            scaling_list.append(gaussian._scaling)
        if gaussian._rotation is not None:
            rotation_list.append(gaussian._rotation)
        if gaussian._opacity is not None:
            opacity_list.append(gaussian._opacity)
    
    if xyz_list:
        merged_gaussian._xyz = torch.cat(xyz_list, dim=0)
    if features_dc_list:
        merged_gaussian._features_dc = torch.cat(features_dc_list, dim=0)
    if features_rest_list:
        merged_gaussian._features_rest = torch.cat(features_rest_list, dim=0)
    else:
        merged_gaussian._features_rest = None
    if scaling_list:
        merged_gaussian._scaling = torch.cat(scaling_list, dim=0)
    if rotation_list:
        merged_gaussian._rotation = torch.cat(rotation_list, dim=0)
    if opacity_list:
        merged_gaussian._opacity = torch.cat(opacity_list, dim=0)
    
    return merged_gaussian


def exploded_gaussians(gaussians_list, explosion_scale=0.4):

    if not gaussians_list:
        raise ValueError("gaussians_list is empty")

    first_gaussian = gaussians_list[0]
    merged_gaussian = Gaussian(**first_gaussian.init_params, device=first_gaussian.device)
    
    xyz_list = []
    features_dc_list = []
    features_rest_list = []
    scaling_list = []
    rotation_list = []
    opacity_list = []
    
    all_centers = []
    for gaussian in gaussians_list:
        if gaussian._xyz is not None:
            center = gaussian.get_xyz.mean(dim=0)
            all_centers.append(center)
    
    if not all_centers:
        raise ValueError("No valid gaussians with xyz data found")
    
    all_centers = torch.stack(all_centers)
    global_center = all_centers.mean(dim=0)
    
    for i, gaussian in enumerate(gaussians_list):
        if (gaussian.sh_degree != first_gaussian.sh_degree or 
            not torch.allclose(gaussian.aabb, first_gaussian.aabb)):
            raise ValueError("All Gaussian objects must have the same sh_degree and aabb parameters")
        
        if i < len(all_centers):
            part_center = all_centers[i]
            direction = part_center - global_center
            direction_norm = torch.norm(direction)
            if direction_norm > 1e-6:
                direction = direction / direction_norm
            else:
                direction = torch.randn(3, device=gaussian.device)
                direction = direction / torch.norm(direction)
            
            offset = direction * explosion_scale
        else:
            offset = torch.zeros(3, device=gaussian.device)
            
        if gaussian._xyz is not None:
            original_xyz = gaussian.get_xyz
            exploded_xyz = original_xyz + offset
            exploded_xyz_normalized = (exploded_xyz - gaussian.aabb[None, :3]) / gaussian.aabb[None, 3:]
            xyz_list.append(exploded_xyz_normalized)
            
        if gaussian._features_dc is not None:
            features_dc_list.append(gaussian._features_dc)
        if gaussian._features_rest is not None:
            features_rest_list.append(gaussian._features_rest)
        if gaussian._scaling is not None:
            scaling_list.append(gaussian._scaling)
        if gaussian._rotation is not None:
            rotation_list.append(gaussian._rotation)
        if gaussian._opacity is not None:
            opacity_list.append(gaussian._opacity)
    
    if xyz_list:
        merged_gaussian._xyz = torch.cat(xyz_list, dim=0)
    if features_dc_list:
        merged_gaussian._features_dc = torch.cat(features_dc_list, dim=0)
    if features_rest_list:
        merged_gaussian._features_rest = torch.cat(features_rest_list, dim=0)
    else:
        merged_gaussian._features_rest = None
    if scaling_list:
        merged_gaussian._scaling = torch.cat(scaling_list, dim=0)
    if rotation_list:
        merged_gaussian._rotation = torch.cat(rotation_list, dim=0)
    if opacity_list:
        merged_gaussian._opacity = torch.cat(opacity_list, dim=0)
    
    return merged_gaussian