File size: 18,717 Bytes
491eded |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 |
from typing import *
from einops import rearrange
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from ..modules.utils import zero_module, convert_module_to_f16, convert_module_to_f32
from ..modules.transformer import AbsolutePositionEmbedder
from ..modules.norm import LayerNorm32
from ..modules import sparse as sp
from ..modules.sparse.transformer import ModulatedSparseTransformerCrossBlock
from .sparse_structure_flow import TimestepEmbedder
from .sparse_elastic_mixin import SparseTransformerElasticMixin
class SparseResBlock3d(nn.Module):
"""
3D Sparse Residual Block with time embedding conditioning.
This block performs normalization, convolution operations on sparse tensors,
and incorporates time embeddings via adaptive layer normalization.
Supports optional up/downsampling.
"""
def __init__(
self,
channels: int,
emb_channels: int,
out_channels: Optional[int] = None,
downsample: bool = False,
upsample: bool = False,
):
super().__init__()
self.channels = channels
self.emb_channels = emb_channels
self.out_channels = out_channels or channels
self.downsample = downsample
self.upsample = upsample
assert not (downsample and upsample), "Cannot downsample and upsample at the same time"
# First normalization and convolution
self.norm1 = LayerNorm32(channels, elementwise_affine=True, eps=1e-6)
self.norm2 = LayerNorm32(self.out_channels, elementwise_affine=False, eps=1e-6)
self.conv1 = sp.SparseConv3d(channels, self.out_channels, 3)
# Second convolution initialized to zero for stable training
self.conv2 = zero_module(sp.SparseConv3d(self.out_channels, self.out_channels, 3))
# Time embedding projection for adaptive layer norm
self.emb_layers = nn.Sequential(
nn.SiLU(),
nn.Linear(emb_channels, 2 * self.out_channels, bias=True),
)
# Skip connection with linear projection if channel dimensions change
self.skip_connection = sp.SparseLinear(channels, self.out_channels) if channels != self.out_channels else nn.Identity()
# Optional up/downsampling
self.updown = None
if self.downsample:
self.updown = sp.SparseDownsample(2)
elif self.upsample:
self.updown = sp.SparseUpsample(2)
def _updown(self, x: sp.SparseTensor) -> sp.SparseTensor:
"""Apply up/downsampling if configured"""
if self.updown is not None:
x = self.updown(x)
return x
def forward(self, x: sp.SparseTensor, emb: torch.Tensor) -> sp.SparseTensor:
"""
Forward pass of the residual block.
Args:
x: Input sparse tensor
emb: Time embedding tensor
Returns:
Processed sparse tensor
"""
# print(f"number of points in the input: {x.coords.shape[0]}")
# Project embedding to scale and shift factors
emb_out = self.emb_layers(emb).type(x.dtype)
scale, shift = torch.chunk(emb_out, 2, dim=1)
# Apply up/downsampling if needed
x = self._updown(x)
# Main processing path
h = x.replace(self.norm1(x.feats))
h = h.replace(F.silu(h.feats))
h = self.conv1(h)
# Apply adaptive layer norm using scale and shift from time embedding
h = h.replace(self.norm2(h.feats)) * (1 + scale) + shift
h = h.replace(F.silu(h.feats))
h = self.conv2(h)
# Residual connection
h = h + self.skip_connection(x)
return h
class SLatFlowModel(nn.Module):
"""
Structured Latent Flow Model for 3D generative modeling.
This model combines sparse convolutions with transformer blocks and
supports conditional generation. It uses a U-Net-like architecture with
skip connections and has optional mixed precision support.
"""
def __init__(
self,
resolution: int,
in_channels: int,
model_channels: int,
cond_channels: int,
out_channels: int,
num_blocks: int,
num_heads: Optional[int] = None,
num_head_channels: Optional[int] = 64,
mlp_ratio: float = 4,
patch_size: int = 2,
num_io_res_blocks: int = 2,
io_block_channels: List[int] = None,
pe_mode: Literal["ape", "rope"] = "ape",
use_fp16: bool = False,
use_checkpoint: bool = False,
use_skip_connection: bool = True,
share_mod: bool = False,
qk_rms_norm: bool = False,
qk_rms_norm_cross: bool = False,
):
super().__init__()
self.resolution = resolution
self.in_channels = in_channels
self.model_channels = model_channels
self.cond_channels = cond_channels
self.out_channels = out_channels
self.num_blocks = num_blocks
self.num_heads = num_heads or model_channels // num_head_channels
self.mlp_ratio = mlp_ratio
self.patch_size = patch_size
self.num_io_res_blocks = num_io_res_blocks
self.io_block_channels = io_block_channels
self.pe_mode = pe_mode
self.use_fp16 = use_fp16
self.use_checkpoint = use_checkpoint
self.use_skip_connection = use_skip_connection
self.share_mod = share_mod
self.qk_rms_norm = qk_rms_norm
self.qk_rms_norm_cross = qk_rms_norm_cross
self.dtype = torch.float16 if use_fp16 else torch.float32
# Validate configurations
if self.io_block_channels is not None:
assert int(np.log2(patch_size)) == np.log2(patch_size), "Patch size must be a power of 2"
assert np.log2(patch_size) == len(io_block_channels), "Number of IO ResBlocks must match the number of stages"
# Time step embedder
self.t_embedder = TimestepEmbedder(model_channels)
# Shared modulation for all transformer blocks if enabled
if share_mod:
self.adaLN_modulation = nn.Sequential(
nn.SiLU(),
nn.Linear(model_channels, 6 * model_channels, bias=True)
)
self.part_max_size = 50
# Positional embedding for transformer blocks
if pe_mode == "ape":
self.pos_embedder = AbsolutePositionEmbedder(model_channels)
self.part_pe = nn.Embedding(self.part_max_size + 1, model_channels) # +1 for overall object
self.part_pe_proj = nn.Linear(model_channels, model_channels)
# Mask embedding
self.dinov2_hidden_size = 1024
self.mask_group_emb_dim = 128
self.mask_group_emb = nn.Embedding(self.part_max_size + 1, self.mask_group_emb_dim) # +1 for background
self.mask_group_emb_proj = nn.Linear(self.mask_group_emb_dim, self.dinov2_hidden_size)
# Input projection layer
self.input_layer = sp.SparseLinear(in_channels, model_channels if io_block_channels is None else io_block_channels[0])
# Input processing blocks (downsampling path)
self.input_blocks = nn.ModuleList([])
# print(f"io_block_channels: {io_block_channels}") # io_block_channels: [128]
# print(f"model_channels: {model_channels}") # model_channels: 1024
if io_block_channels is not None:
for chs, next_chs in zip(io_block_channels, io_block_channels[1:] + [model_channels]):
# Add regular residual blocks at current resolution
self.input_blocks.extend([
SparseResBlock3d(
chs,
model_channels,
out_channels=chs,
)
for _ in range(num_io_res_blocks-1)
])
# Add downsampling block at the end of each resolution level
self.input_blocks.append(
SparseResBlock3d(
chs,
model_channels,
out_channels=next_chs,
downsample=True,
)
)
# Core transformer blocks
self.blocks = nn.ModuleList([
ModulatedSparseTransformerCrossBlock(
model_channels,
cond_channels,
num_heads=self.num_heads,
mlp_ratio=self.mlp_ratio,
attn_mode='full',
use_checkpoint=self.use_checkpoint,
use_rope=(pe_mode == "rope"),
share_mod=self.share_mod,
qk_rms_norm=self.qk_rms_norm,
qk_rms_norm_cross=self.qk_rms_norm_cross,
)
for _ in range(num_blocks)
])
# Output processing blocks (upsampling path)
self.out_blocks = nn.ModuleList([])
if io_block_channels is not None:
for chs, prev_chs in zip(reversed(io_block_channels), [model_channels] + list(reversed(io_block_channels[1:]))):
# Add upsampling block at the beginning of each resolution level
self.out_blocks.append(
SparseResBlock3d(
prev_chs * 2 if self.use_skip_connection else prev_chs,
model_channels,
out_channels=chs,
upsample=True,
)
)
# Add regular residual blocks at current resolution
self.out_blocks.extend([
SparseResBlock3d(
chs * 2 if self.use_skip_connection else chs,
model_channels,
out_channels=chs,
)
for _ in range(num_io_res_blocks-1)
])
# Final output projection
self.out_layer = sp.SparseLinear(model_channels if io_block_channels is None else io_block_channels[0], out_channels)
# Initialize model weights
self.initialize_weights()
if use_fp16:
self.convert_to_fp16()
# else:
# self.convert_to_fp32()
@property
def device(self) -> torch.device:
"""
Return the device of the model.
"""
return next(self.parameters()).device
def convert_to_fp16(self) -> None:
"""
Convert the torso of the model to float16 for mixed precision training.
"""
self.input_blocks.apply(convert_module_to_f16)
self.blocks.apply(convert_module_to_f16)
self.out_blocks.apply(convert_module_to_f16)
def convert_to_fp32(self) -> None:
"""
Convert the torso of the model back to float32.
"""
self.input_blocks.apply(convert_module_to_f32)
self.blocks.apply(convert_module_to_f32)
self.out_blocks.apply(convert_module_to_f32)
def initialize_weights(self) -> None:
"""
Initialize model weights with specialized initialization for different components.
"""
# Initialize transformer layers with Xavier uniform initialization
def _basic_init(module):
if isinstance(module, nn.Linear):
torch.nn.init.xavier_uniform_(module.weight)
if module.bias is not None:
nn.init.constant_(module.bias, 0)
self.apply(_basic_init)
# Initialize timestep embedding MLP with normal distribution
nn.init.normal_(self.t_embedder.mlp[0].weight, std=0.02)
nn.init.normal_(self.t_embedder.mlp[2].weight, std=0.02)
# Zero-out adaLN modulation layers for stable training
if self.share_mod:
nn.init.constant_(self.adaLN_modulation[-1].weight, 0)
nn.init.constant_(self.adaLN_modulation[-1].bias, 0)
else:
for block in self.blocks:
nn.init.constant_(block.adaLN_modulation[-1].weight, 0)
nn.init.constant_(block.adaLN_modulation[-1].bias, 0)
# Zero-out output layers for stable training
nn.init.constant_(self.out_layer.weight, 0)
nn.init.constant_(self.out_layer.bias, 0)
# part embedding initialization
nn.init.zeros_(self.part_pe_proj.weight)
nn.init.zeros_(self.part_pe_proj.bias)
# Initialize layer positional embeddings
self.part_pe.weight.data.normal_(mean=0.0,std=0.02)
# Initialize group embedding
nn.init.zeros_(self.mask_group_emb_proj.weight)
nn.init.zeros_(self.mask_group_emb_proj.bias)
self.mask_group_emb.weight.data.normal_(mean=0.0, std=0.02)
def forward(self, x: sp.SparseTensor, t: torch.Tensor, cond: torch.Tensor, **kwargs) -> sp.SparseTensor:
"""
Forward pass of the Structured Latent Flow model.
Args:
x: Input sparse tensor
t: Timestep embedding inputs
cond: Conditional input for cross-attention
**kwargs: Additional arguments, including part_layouts if available
Returns:
Output sparse tensor
"""
# x = x.type(self.dtype)
# t = t.type(self.dtype)
# cond = cond.type(self.dtype)
input_dtype = x.dtype
masks = kwargs['masks'] # [b, h, w]
# Ensure masks are always long type regardless of source
masks = masks.long() # Explicitly convert to long type for embedding
masks = rearrange(masks, 'b h w -> b (h w)') # [b, h*w]
masks_emb = self.mask_group_emb(masks) # [b, h*w, 128]
masks_emb = self.mask_group_emb_proj(masks_emb) # [b, h*w, 1024]
group_emb = torch.zeros((cond.shape[0], cond.shape[1], masks_emb.shape[2]), device=cond.device, dtype=cond.dtype)
group_emb[:, :masks_emb.shape[1], :] = masks_emb
cond = cond + group_emb
cond = cond.type(self.dtype)
# Store original batch IDs for later restoration
original_batch_ids = x.coords[:, 0].clone()
# Create new batch IDs to represent individual parts (instead of batches)
new_batch_ids = torch.zeros_like(original_batch_ids)
# Assign unique IDs to each part across all batches
part_layouts = kwargs['part_layouts']
part_id = 0
len_before = 0
batch_last_partid = []
for batch_idx, part_layout in enumerate(part_layouts):
for layout_idx, layout in enumerate(part_layout):
adjusted_layout = slice(layout.start + len_before, layout.stop + len_before, layout.step)
new_batch_ids[adjusted_layout] = part_id
part_id += 1
batch_last_partid.append(part_id)
len_before += part_layout[-1].stop
# Project input to model dimensions and convert to target dtype
x = self.input_layer(x).type(self.dtype)
x = sp.SparseTensor(
feats = x.feats,
coords = torch.cat([new_batch_ids.view(-1, 1), x.coords[:, 1:]], dim=1),)
# Process timestep embedding and condition input
t_emb = self.t_embedder(t)
if self.share_mod:
t_emb = self.adaLN_modulation(t_emb)
t_emb = t_emb.type(self.dtype)
t_emb_updown = []
for batch_idx, part_layout in enumerate(part_layouts):
t_emb_updown_batch = t_emb[batch_idx:batch_idx+1].repeat(len(part_layout), 1)
t_emb_updown.append(t_emb_updown_batch)
t_emb_updown = torch.cat(t_emb_updown, dim=0).type(self.dtype)
# Store features for skip connections
skips = []
# Downsampling path through input blocks
for block in self.input_blocks:
x = block(x, t_emb_updown)
skips.append(x.feats)
# Store part-wise batch IDs before transformer processing
part_wise_batch_ids = x.coords[:, 0].clone()
# Convert to batch-wise IDs for transformer blocks
new_transformer_batch_ids = torch.zeros_like(part_wise_batch_ids)
part_ids_in_each_object = torch.zeros_like(part_wise_batch_ids)
start_reform = 0
last_part_id = 0
for part_id in batch_last_partid:
mask = (part_wise_batch_ids >= last_part_id) & (part_wise_batch_ids < part_id)
new_transformer_batch_ids[mask] = start_reform
part_ids_in_each_object[mask] = part_wise_batch_ids[mask] - last_part_id
last_part_id = part_id
start_reform += 1
# Update coordinates with batch-wise IDs for transformer processing
h = sp.SparseTensor(
feats = x.feats,
coords = torch.cat([new_transformer_batch_ids.view(-1, 1), x.coords[:, 1:]], dim=1))
# Add positional embeddings for transformer blocks
if self.pe_mode == "ape":
# Add absolute positional embeddings to spatial coordinates
h = h + self.pos_embedder(h.coords[:, 1:]).type(self.dtype)
# Part-with PE; overall is 0
part_pe = self.part_pe(part_ids_in_each_object)
part_pe = self.part_pe_proj(part_pe)
h = h + part_pe.type(self.dtype)
else:
raise NotImplementedError
# Process with transformer blocks
for block in self.blocks:
h = block(h, t_emb, cond)
h = x.replace(feats=h.feats, coords=torch.cat([part_wise_batch_ids.view(-1, 1), h.coords[:, 1:]], dim=1))
# Upsampling path with output blocks and skip connections
for block, skip in zip(self.out_blocks, reversed(skips)):
if self.use_skip_connection:
h = block(h.replace(torch.cat([h.feats, skip], dim=1)), t_emb_updown)
else:
h = block(h, t_emb_updown)
h = h.replace(F.layer_norm(h.feats, h.feats.shape[-1:]))
h = self.out_layer(h.type(input_dtype))
h = sp.SparseTensor(
feats = h.feats,
coords = torch.cat([original_batch_ids.view(-1, 1), h.coords[:, 1:]], dim=1))
return h
class ElasticSLatFlowModel(SparseTransformerElasticMixin, SLatFlowModel):
"""
Structured Latent Flow Model with elastic memory management.
This class extends SLatFlowModel with memory-efficient operations,
allowing training with limited VRAM by dynamically managing memory
allocation for sparse tensors.
"""
pass |