File size: 8,973 Bytes
491eded
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
# https://github.com/wolny/pytorch-3dunet/blob/master/pytorch3dunet/unet3d/buildingblocks.py
# MIT License

# Copyright (c) 2018 Adrian Wolny

# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:

# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.

# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.

import torch.nn as nn

from partfield.model.UNet.buildingblocks import DoubleConv, ResNetBlock, \
    create_decoders, create_encoders

def number_of_features_per_level(init_channel_number, num_levels):
    return [init_channel_number * 2 ** k for k in range(num_levels)]

class AbstractUNet(nn.Module):
    """
    Base class for standard and residual UNet.

    Args:
        in_channels (int): number of input channels
        out_channels (int): number of output segmentation masks;
            Note that the of out_channels might correspond to either
            different semantic classes or to different binary segmentation mask.
            It's up to the user of the class to interpret the out_channels and
            use the proper loss criterion during training (i.e. CrossEntropyLoss (multi-class)
            or BCEWithLogitsLoss (two-class) respectively)
        f_maps (int, tuple): number of feature maps at each level of the encoder; if it's an integer the number
            of feature maps is given by the geometric progression: f_maps ^ k, k=1,2,3,4
        final_sigmoid (bool): if True apply element-wise nn.Sigmoid after the final 1x1 convolution,
            otherwise apply nn.Softmax. In effect only if `self.training == False`, i.e. during validation/testing
        basic_module: basic model for the encoder/decoder (DoubleConv, ResNetBlock, ....)
        layer_order (string): determines the order of layers in `SingleConv` module.
            E.g. 'crg' stands for GroupNorm3d+Conv3d+ReLU. See `SingleConv` for more info
        num_groups (int): number of groups for the GroupNorm
        num_levels (int): number of levels in the encoder/decoder path (applied only if f_maps is an int)
            default: 4
        is_segmentation (bool): if True and the model is in eval mode, Sigmoid/Softmax normalization is applied
            after the final convolution; if False (regression problem) the normalization layer is skipped
        conv_kernel_size (int or tuple): size of the convolving kernel in the basic_module
        pool_kernel_size (int or tuple): the size of the window
        conv_padding (int or tuple): add zero-padding added to all three sides of the input
        conv_upscale (int): number of the convolution to upscale in encoder if DoubleConv, default: 2
        upsample (str): algorithm used for decoder upsampling:
            InterpolateUpsampling:   'nearest' | 'linear' | 'bilinear' | 'trilinear' | 'area'
            TransposeConvUpsampling: 'deconv'
            No upsampling:           None
            Default: 'default' (chooses automatically)
        dropout_prob (float or tuple): dropout probability, default: 0.1
        is3d (bool): if True the model is 3D, otherwise 2D, default: True
    """

    def __init__(self, in_channels, out_channels, final_sigmoid, basic_module, f_maps=64, layer_order='gcr',
                 num_groups=8, num_levels=4, is_segmentation=False, conv_kernel_size=3, pool_kernel_size=2,
                 conv_padding=1, conv_upscale=2, upsample='default', dropout_prob=0.1, is3d=True, encoder_only=False):
        super(AbstractUNet, self).__init__()

        if isinstance(f_maps, int):
            f_maps = number_of_features_per_level(f_maps, num_levels=num_levels)

        assert isinstance(f_maps, list) or isinstance(f_maps, tuple)
        assert len(f_maps) > 1, "Required at least 2 levels in the U-Net"
        if 'g' in layer_order:
            assert num_groups is not None, "num_groups must be specified if GroupNorm is used"

        # create encoder path
        self.encoders = create_encoders(in_channels, f_maps, basic_module, conv_kernel_size,
                                        conv_padding, conv_upscale, dropout_prob,
                                        layer_order, num_groups, pool_kernel_size, is3d)

        self.encoder_only = encoder_only
        
        if encoder_only == False:
            # create decoder path
            self.decoders = create_decoders(f_maps, basic_module, conv_kernel_size, conv_padding,
                                            layer_order, num_groups, upsample, dropout_prob,
                                            is3d)

            # in the last layer a 1×1 convolution reduces the number of output channels to the number of labels
            if is3d:
                self.final_conv = nn.Conv3d(f_maps[1], out_channels, 1)
            else:
                self.final_conv = nn.Conv2d(f_maps[1], out_channels, 1)

            if is_segmentation:
                # semantic segmentation problem
                if final_sigmoid:
                    self.final_activation = nn.Sigmoid()
                else:
                    self.final_activation = nn.Softmax(dim=1)
            else:
                # regression problem
                self.final_activation = None

    def forward(self, x, return_bottleneck_feat=False):
        # encoder part
        encoders_features = []
        for encoder in self.encoders:
            x = encoder(x)
            # reverse the encoder outputs to be aligned with the decoder
            encoders_features.insert(0, x)

        # remove the last encoder's output from the list
        # !!remember: it's the 1st in the list
        bottleneck_feat = encoders_features[0]
        if self.encoder_only:
            return bottleneck_feat
        else:
            encoders_features = encoders_features[1:]

            # decoder part
            for decoder, encoder_features in zip(self.decoders, encoders_features):
                # pass the output from the corresponding encoder and the output
                # of the previous decoder
                x = decoder(encoder_features, x)

            x = self.final_conv(x)
            # During training the network outputs logits
            if self.final_activation is not None:
                x = self.final_activation(x)

            if return_bottleneck_feat:
                return x, bottleneck_feat
            else:
                return x

class ResidualUNet3D(AbstractUNet):
    """
    Residual 3DUnet model implementation based on https://arxiv.org/pdf/1706.00120.pdf.
    Uses ResNetBlock as a basic building block, summation joining instead
    of concatenation joining and transposed convolutions for upsampling (watch out for block artifacts).
    Since the model effectively becomes a residual net, in theory it allows for deeper UNet.
    """

    def __init__(self, in_channels, out_channels, final_sigmoid=True, f_maps=(8, 16, 64, 256, 1024), layer_order='gcr',
                 num_groups=8, num_levels=5, is_segmentation=True, conv_padding=1,
                 conv_upscale=2, upsample='default', dropout_prob=0.1, encoder_only=False,  **kwargs):
        super(ResidualUNet3D, self).__init__(in_channels=in_channels,
                                             out_channels=out_channels,
                                             final_sigmoid=final_sigmoid,
                                             basic_module=ResNetBlock,
                                             f_maps=f_maps,
                                             layer_order=layer_order,
                                             num_groups=num_groups,
                                             num_levels=num_levels,
                                             is_segmentation=is_segmentation,
                                             conv_padding=conv_padding,
                                             conv_upscale=conv_upscale,
                                             upsample=upsample,
                                             dropout_prob=dropout_prob,
                                             encoder_only=encoder_only,
                                             is3d=True)