Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,875 Bytes
97a05c0 6a31118 97a05c0 6a31118 d8920cd 0d593aa 9a1832e 1edde68 9a1832e 97a05c0 9a1832e 97a05c0 9a1832e 97a05c0 9a1832e 97a05c0 b60442d 97a05c0 6a31118 97a05c0 6a31118 97a05c0 6a31118 97a05c0 6a31118 97a05c0 d1b43bd 97a05c0 b60442d 97a05c0 b60442d 97a05c0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
# Copyright (2024) Bytedance Ltd. and/or its affiliates
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# copy and modify from: https://github.com/OpenGVLab/Ask-Anything/blob/main/video_chat2/demo/demo.py
import spaces
from copy import deepcopy
import gradio as gr
from gradio.themes.utils import colors, fonts, sizes
from tools.conversation import Chat, conv_templates
from tools.utils import load_model_and_processor, file_to_base64
from dataset.processor import Processor
import os
import torch
# huggingface-cli login
model_path = os.getenv("MODEL_PATH", "omni-research/Tarsier2-7b")
max_n_frames = int(os.getenv("MAX_N_FRAMES", 16))
debug = False
device = 'cuda' if not debug else 'cpu'
# ========================================
# Model Initialization
# ========================================
def init_model():
print("Start Initialization...")
# if torch.cuda.is_available():
if not debug:
model, processor = load_model_and_processor(model_path, max_n_frames)
else:
print(f"No Valid GPU! Lauch in debug mode!")
processor = Processor(model_path, max_n_frames)
model = None
chat = Chat(model, processor, device, debug)
print('Initialization Finished')
return chat
# ========================================
# Gradio Setting
# ========================================
def gradio_reset(chat_state, img_file, img_list):
if chat_state is not None:
chat_state.messages = []
img_file = None
if img_list is not None:
img_list = []
return None, gr.update(value=None, interactive=True), gr.update(value=None, interactive=True), gr.update(value=None, interactive=True), gr.update(placeholder='Please upload your video first', interactive=False),gr.update(value="Upload & Start Chat", interactive=True), chat_state, img_file, img_list
def upload_img(gr_img, gr_video, gr_gif, chat_state, num_frames):
print("video, image or gif:", gr_video, gr_img, gr_gif)
conv_type = ''
if 'tarsier2-7b' in model_path.lower():
conv_type = 'tarsier2-7b'
elif '7b' in model_path.lower():
conv_type = 'tarsier-7b'
elif '13b' in model_path.lower():
conv_type = 'tarsier-13b'
elif '34b' in model_path.lower():
conv_type = 'tarsier-34b'
else:
raise ValueError(f"Unknow model: {model_path}")
chat_state = deepcopy(conv_templates[conv_type])
img_list = []
if gr_img is None and gr_video is None and gr_gif is None:
return None, None, None, gr.update(interactive=True), gr.update(interactive=True, placeholder='Please upload video/image first!'), chat_state, None, None
if gr_video or gr_img or gr_gif:
for img_file in [gr_video, gr_img, gr_gif]:
if img_file is not None:
break
return gr.update(interactive=True), gr.update(interactive=True), gr.update(interactive=True), gr.update(interactive=True, placeholder='Type and press Enter'), gr.update(value="Start Chatting", interactive=False), chat_state, img_file, img_list
def gradio_ask(user_message, chatbot, chat_state):
if len(user_message) == 0:
return gr.update(interactive=True, placeholder='Input should not be empty!'), chatbot, chat_state
chat_state = chat.ask(user_message, chat_state)
chatbot = chatbot + [[user_message, None]]
return '', chatbot, chat_state
@spaces.GPU(duration=120)
def gradio_answer(chatbot, chat_state, img_file, img_list, top_p, temperature, n_frames=None):
llm_message, chat_state, img_list = chat.answer(conv=chat_state, visual_data_file=img_file, images=img_list, n_frames=n_frames, max_new_tokens=256, num_beams=1, temperature=temperature, top_p=top_p)
chatbot[-1][1] = llm_message
print(chat_state)
print(f"Answer: {llm_message}")
return chatbot, chat_state, img_list
class OpenGVLab(gr.themes.base.Base):
def __init__(
self,
*,
primary_hue=colors.blue,
secondary_hue=colors.sky,
neutral_hue=colors.gray,
spacing_size=sizes.spacing_md,
radius_size=sizes.radius_sm,
text_size=sizes.text_md,
font=(
fonts.GoogleFont("Noto Sans"),
"ui-sans-serif",
"sans-serif",
),
font_mono=(
fonts.GoogleFont("IBM Plex Mono"),
"ui-monospace",
"monospace",
),
):
super().__init__(
primary_hue=primary_hue,
secondary_hue=secondary_hue,
neutral_hue=neutral_hue,
spacing_size=spacing_size,
radius_size=radius_size,
text_size=text_size,
font=font,
font_mono=font_mono,
)
super().set(
body_background_fill="*neutral_50",
)
gvlabtheme = OpenGVLab(primary_hue=colors.blue,
secondary_hue=colors.sky,
neutral_hue=colors.gray,
spacing_size=sizes.spacing_md,
radius_size=sizes.radius_sm,
text_size=sizes.text_md,
)
logo_b64 = file_to_base64("assets/figures/tarsier_logo.jpg")
title = f"""<center><a href="https://github.com/bytedance/tarsier"><img src="data:image/jpeg;base64,{logo_b64}" alt="Tarsier" border="0" style="margin: 0 auto; height: 140px;" /></a></center>"""
description ="""<center><p><a href='https://github.com/bytedance/tarsier'><img src='https://img.shields.io/badge/Github-Code-blue'></a></p><p></center>
"""
with gr.Blocks(title="Tarsier",theme=gvlabtheme,css="#chatbot {overflow:auto; height:500px;} #InputVideo {overflow:visible; height:320px;} footer {visibility: none}") as demo:
gr.Markdown(title)
gr.Markdown(description)
with gr.Row():
with gr.Column(scale=0.5, visible=True) as video_upload:
with gr.Column(elem_id="image", scale=0.5) as img_part:
with gr.Tab("Video", elem_id='video_tab'):
up_video = gr.Video(interactive=True, include_audio=True, elem_id="video_upload", height=360)
with gr.Tab("Image", elem_id='image_tab'):
up_image = gr.Image(type="filepath", interactive=True, elem_id="image_upload", height=360)
with gr.Tab("GIF", elem_id='gif_tab'):
up_gif = gr.File(type="filepath", file_count="single", file_types=[".gif"], interactive=True, elem_id="gif_upload", height=360)
upload_button = gr.Button(value="Upload & Start Chat", interactive=True, variant="primary")
clear = gr.Button("Restart")
# num_beams = gr.Slider(
# minimum=1,
# maximum=10,
# value=1,
# step=1,
# interactive=True,
# label="beam search numbers)",
# )
temperature = gr.Slider(
minimum=0.0,
maximum=1.0,
value=0.0,
step=0.1,
interactive=True,
label="Temperature",
)
top_p = gr.Slider(
minimum=0.1,
maximum=1.0,
value=1.0,
step=0.1,
interactive=True,
label="Top_p",
)
num_frames = gr.Slider(
minimum=4,
maximum=16,
value=16,
step=2,
interactive=True,
label="#Frames",
)
with gr.Column(visible=True) as input_raws:
chat_state = gr.State()
img_list = gr.State()
img_file = gr.State()
chatbot = gr.Chatbot(elem_id="chatbot",label='VideoChat')
with gr.Row():
with gr.Column(scale=0.7):
text_input = gr.Textbox(show_label=False, placeholder='Please upload your video first', interactive=False, container=False)
with gr.Column(scale=0.15, min_width=0):
run = gr.Button("💭Send")
with gr.Column(scale=0.15, min_width=0):
clear = gr.Button("🔄Clear️")
gr.Examples(examples=[
[f"examples/test1.mp4", "Describe the video in detail."],
[f"examples/test2.mp4", "Are they having a pleasant conversation?"],
], inputs=[up_video, text_input])
chat = init_model()
upload_button.click(upload_img, [up_image, up_video, up_gif, chat_state, num_frames], [up_image, up_video, up_gif, text_input, upload_button, chat_state, img_file, img_list])
text_input.submit(gradio_ask, [text_input, chatbot, chat_state], [text_input, chatbot, chat_state]).then(
gradio_answer, [chatbot, chat_state, img_file, img_list, top_p, temperature, num_frames], [chatbot, chat_state, img_list]
)
run.click(gradio_ask, [text_input, chatbot, chat_state], [text_input, chatbot, chat_state]).then(
gradio_answer, [chatbot, chat_state, img_file, img_list, top_p, temperature, num_frames], [chatbot, chat_state, img_list]
)
run.click(lambda: "", None, text_input)
clear.click(gradio_reset, [chat_state, img_file, img_list], [chatbot, up_image, up_video, up_gif, text_input, upload_button, chat_state, img_file, img_list], queue=False)
demo.launch()
# demo.launch(server_name="0.0.0.0", server_port=11451) |