Spaces:
Runtime error
Runtime error
File size: 7,537 Bytes
c6d26b8 9a6d49e c6d26b8 56cf37c c6d26b8 9a6d49e c6d26b8 9a6d49e c6d26b8 9a6d49e c6d26b8 9a6d49e c6d26b8 9a6d49e c6d26b8 9a6d49e c6d26b8 8c811eb e4dd4df c6d26b8 9a6d49e c6d26b8 9a6d49e c6d26b8 9a6d49e c6d26b8 9a6d49e c6d26b8 9a6d49e c6d26b8 9a6d49e c6d26b8 9a6d49e c6d26b8 e59da9c c6d26b8 e59da9c c6d26b8 e59da9c c6d26b8 9a6d49e c6d26b8 e59da9c c6d26b8 e59da9c c6d26b8 9a6d49e c6d26b8 9a6d49e c6d26b8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 |
# OCR Translate v0.2
import os
os.system("sudo apt-get install xclip")
import gradio as gr
import nltk
import pyclip
import pytesseract
from nltk.tokenize import sent_tokenize
from transformers import MarianMTModel, MarianTokenizer
# Added below code
from fastapi import FastAPI, File, Request, UploadFile, Body, Depends, HTTPException
from fastapi.security.api_key import APIKeyHeader
from typing import Optional, Annotated
from fastapi.encoders import jsonable_encoder
from PIL import Image
from io import BytesIO
API_KEY = os.environ.get("API_KEY")
app = FastAPI()
api_key_header = APIKeyHeader(name="api_key", auto_error=False)
def get_api_key(api_key: Optional[str] = Depends(api_key_header)):
if api_key is None or api_key != API_KEY:
raise HTTPException(status_code=401, detail="Unauthorized access")
return api_key
@app.post("/api/ocr", response_model=dict)
async def ocr(
api_key: str = Depends(get_api_key),
image: UploadFile = File(...),
# languages: list = Body(["eng"])
):
try:
content = await image.read()
image = Image.open(BytesIO(content))
print("[image]",image)
if hasattr(pytesseract, "image_to_string"):
print("Image to string function is available")
# print(pytesseract.image_to_string(image, lang = 'eng'))
text = ocr_tesseract(image, ['eng'])
else:
print("Image to string function is not available")
# text = pytesseract.image_to_string(image, lang="+".join(languages))
except Exception as e:
return {"error": str(e)}, 500
return {"ImageText": "text"}
nltk.download('punkt')
OCR_TR_DESCRIPTION = '''# OCR Translate v0.2
<div id="content_align">OCR translation system based on Tesseract</div>'''
# Image path
img_dir = "./data"
# Get tesseract language list
choices = os.popen('tesseract --list-langs').read().split('\n')[1:-1]
# Translation model selection
def model_choice(src="en", trg="zh"):
# https://huggingface.co/Helsinki-NLP/opus-mt-zh-en
# https://huggingface.co/Helsinki-NLP/opus-mt-en-zh
model_name = f"Helsinki-NLP/opus-mt-{src}-{trg}" # Model name
tokenizer = MarianTokenizer.from_pretrained(model_name) # tokenizer
model = MarianMTModel.from_pretrained(model_name) # Model
return tokenizer, model
# Convert tesseract language list to pytesseract language
def ocr_lang(lang_list):
lang_str = ""
lang_len = len(lang_list)
if lang_len == 1:
return lang_list[0]
else:
for i in range(lang_len):
lang_list.insert(lang_len - i, "+")
lang_str = "".join(lang_list[:-1])
return lang_str
# ocr tesseract
def ocr_tesseract(img, languages):
print("[img]", img)
print("[languages]", languages)
ocr_str = pytesseract.image_to_string(img, lang=ocr_lang(languages))
return ocr_str
# Clear
def clear_content():
return None
# copy to clipboard
def cp_text(input_text):
# sudo apt-get install xclip
try:
pyclip.copy(input_text)
except Exception as e:
print("sudo apt-get install xclip")
print(e)
# clear clipboard
def cp_clear():
pyclip.clear()
# translate
def translate(input_text, inputs_transStyle):
# reference:https://huggingface.co/docs/transformers/model_doc/marian
if input_text is None or input_text == "":
return "System prompt: There is no content to translate!"
# Select translation model
trans_src, trans_trg = inputs_transStyle.split("-")[0], inputs_transStyle.split("-")[1]
tokenizer, model = model_choice(trans_src, trans_trg)
translate_text = ""
input_text_list = input_text.split("\n\n")
translate_text_list_tmp = []
for i in range(len(input_text_list)):
if input_text_list[i] != "":
translate_text_list_tmp.append(input_text_list[i])
for i in range(len(translate_text_list_tmp)):
translated_sub = model.generate(
**tokenizer(sent_tokenize(translate_text_list_tmp[i]), return_tensors="pt", truncation=True, padding=True))
tgt_text_sub = [tokenizer.decode(t, skip_special_tokens=True) for t in translated_sub]
translate_text_sub = "".join(tgt_text_sub)
translate_text = translate_text + "\n\n" + translate_text_sub
return translate_text[2:]
def main():
with gr.Blocks(css='style.css') as ocr_tr:
gr.Markdown(OCR_TR_DESCRIPTION)
# -------------- OCR text extraction --------------
with gr.Box():
with gr.Row():
gr.Markdown("### Step 01: Text Extraction")
with gr.Row():
with gr.Column():
with gr.Row():
inputs_img = gr.Image(image_mode="RGB", source="upload", type="pil", label="image")
with gr.Row():
inputs_lang = gr.CheckboxGroup(choices=["chi_sim", "eng"],
type="value",
value=['eng'],
label='language')
with gr.Row():
clear_img_btn = gr.Button('Clear')
ocr_btn = gr.Button(value='OCR Extraction', variant="primary")
with gr.Column():
with gr.Row():
outputs_text = gr.Textbox(label="Extract content", lines=20)
with gr.Row():
inputs_transStyle = gr.Radio(choices=["zh-en", "en-zh"],
type="value",
value="zh-en",
label='translation mode')
with gr.Row():
clear_text_btn = gr.Button('Clear')
translate_btn = gr.Button(value='Translate', variant="primary")
with gr.Row():
example_list = [["./data/test.png", ["eng"]], ["./data/test02.png", ["eng"]],
["./data/test03.png", ["chi_sim"]]]
gr.Examples(example_list, [inputs_img, inputs_lang], outputs_text, ocr_tesseract, cache_examples=False)
# -------------- translate --------------
with gr.Box():
with gr.Row():
gr.Markdown("### Step 02: Translation")
with gr.Row():
outputs_tr_text = gr.Textbox(label="Translate Content", lines=20)
with gr.Row():
cp_clear_btn = gr.Button(value='Clear Clipboard')
cp_btn = gr.Button(value='Copy to clipboard', variant="primary")
# ---------------------- OCR Tesseract ----------------------
ocr_btn.click(fn=ocr_tesseract, inputs=[inputs_img, inputs_lang], outputs=[
outputs_text,])
clear_img_btn.click(fn=clear_content, inputs=[], outputs=[inputs_img])
# ---------------------- translate ----------------------
translate_btn.click(fn=translate, inputs=[outputs_text, inputs_transStyle], outputs=[outputs_tr_text])
clear_text_btn.click(fn=clear_content, inputs=[], outputs=[outputs_text])
# ---------------------- copy to clipboard ----------------------
cp_btn.click(fn=cp_text, inputs=[outputs_tr_text], outputs=[])
cp_clear_btn.click(fn=cp_clear, inputs=[], outputs=[])
ocr_tr.launch(inbrowser=True)
if __name__ == '__main__':
main()
|