File size: 4,721 Bytes
63e7fe5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
163936c
 
 
 
 
 
 
 
 
eee73fc
163936c
eee73fc
 
 
 
 
 
32e4ba0
163936c
 
 
 
 
 
 
 
 
 
 
 
 
 
63e7fe5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
163936c
63e7fe5
 
 
 
 
 
 
 
 
 
 
163936c
 
ad27277
 
163936c
 
3911211
32e4ba0
163936c
 
 
32e4ba0
63e7fe5
 
163936c
 
63e7fe5
163936c
63e7fe5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
""" Official evaluation script for v1.1 of the SQuAD dataset. """
import argparse
import json
import re
import string
import sys
from collections import Counter


def normalize_answer(s):
    """Lower text and remove punctuation, articles and extra whitespace."""

    def remove_articles(text):
        return re.sub(r"\b(a|an|the)\b", " ", text)

    def white_space_fix(text):
        return " ".join(text.split())

    def remove_punc(text):
        exclude = set(string.punctuation)
        return "".join(ch for ch in text if ch not in exclude)

    def lower(text):
        return text.lower()

    return white_space_fix(remove_articles(remove_punc(lower(s))))

def recall_score(prediction, ground_truth):
    prediction_tokens = normalize_answer(prediction).split()
    ground_truth_tokens = normalize_answer(ground_truth).split()
    common = Counter(prediction_tokens) & Counter(ground_truth_tokens)
    num_same = sum(common.values())
    if num_same == 0:
        return 0
    recall = 1.0 * num_same / len(ground_truth_tokens)
    return recall

def precision_score(prediction, ground_truth):
    prediction_tokens = normalize_answer(prediction).split()
    ground_truth_tokens = normalize_answer(ground_truth).split()
    common = Counter(prediction_tokens) & Counter(ground_truth_tokens)
    num_same = sum(common.values())
    if num_same == 0:
        return 0
    precision = 1.0 * num_same / len(prediction_tokens)
    return precision


# def f1_score(prediction, ground_truth):
#     prediction_tokens = normalize_answer(prediction).split()
#     ground_truth_tokens = normalize_answer(ground_truth).split()
#     common = Counter(prediction_tokens) & Counter(ground_truth_tokens)
#     num_same = sum(common.values())
#     if num_same == 0:
#         return 0
#     precision = 1.0 * num_same / len(prediction_tokens)
#     recall = 1.0 * num_same / len(ground_truth_tokens)
#     f1 = (2 * precision * recall) / (precision + recall)
#     return f1


def exact_match_score(prediction, ground_truth):
    return normalize_answer(prediction) == normalize_answer(ground_truth)


def metric_max_over_ground_truths(metric_fn, prediction, ground_truths):
    scores_for_ground_truths = []
    for ground_truth in ground_truths:
        score = metric_fn(prediction, ground_truth)
        scores_for_ground_truths.append(score)
    return max(scores_for_ground_truths)


def compute_score(dataset, predictions):
    recall = precision = f1 = exact_match = total = 0
    for article in dataset:
        for paragraph in article["paragraphs"]:
            for qa in paragraph["qas"]:
                total += 1
                if qa["id"] not in predictions:
                    message = "Unanswered question " + qa["id"] + " will receive score 0."
                    print(message, file=sys.stderr)
                    continue
                ground_truths = list(map(lambda x: x["text"], qa["answers"]))
                prediction = predictions[qa["id"]]
                exact_match += metric_max_over_ground_truths(exact_match_score, prediction, ground_truths)
                recall_temp = metric_max_over_ground_truths(recall_score, prediction, ground_truths)
                precision_temp = metric_max_over_ground_truths(precision_score, prediction, ground_truths)

                if recall_temp + precision_temp == 0:
                    f1_temp = 0
                else:
                    f1_temp = (2 * precision_temp * recall_temp) / (precision_temp + recall_temp)
                
                f1 += f1_temp
                recall += recall_temp
                precision += precision_temp

    exact_match = 100.0 * exact_match / total
    f1 = 100.0 * f1 / total
    precision = 100.0 * precision / total
    recall = 100.0 * recall / total

    return {"exact_match": exact_match, "f1": f1, "recall": recall, "precision": precision}


if __name__ == "__main__":
    expected_version = "1.1"
    parser = argparse.ArgumentParser(description="Evaluation for SQuAD " + expected_version)
    parser.add_argument("dataset_file", help="Dataset file")
    parser.add_argument("prediction_file", help="Prediction File")
    args = parser.parse_args()
    with open(args.dataset_file) as dataset_file:
        dataset_json = json.load(dataset_file)
        if dataset_json["version"] != expected_version:
            print(
                "Evaluation expects v-" + expected_version + ", but got dataset with v-" + dataset_json["version"],
                file=sys.stderr,
            )
        dataset = dataset_json["data"]
    with open(args.prediction_file) as prediction_file:
        predictions = json.load(prediction_file)
    print(json.dumps(compute_score(dataset, predictions)))