File size: 24,567 Bytes
de34da3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14451ef
 
de34da3
 
 
 
 
 
 
 
 
 
 
 
 
 
72df8c8
de34da3
 
 
 
 
 
8fea73b
de34da3
 
 
 
 
 
 
 
 
 
14451ef
de34da3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72df8c8
de34da3
 
 
 
 
 
 
 
 
056b358
de34da3
 
 
 
 
 
 
 
 
 
 
 
8fea73b
 
 
 
de34da3
 
 
 
 
 
 
 
 
 
 
 
 
8fea73b
 
 
 
 
 
de34da3
 
 
 
 
 
 
 
 
056b358
 
 
 
 
 
de34da3
056b358
de34da3
056b358
 
8fea73b
 
 
 
 
 
 
 
 
 
 
 
 
 
de34da3
 
 
 
 
 
 
 
 
 
8fea73b
de34da3
 
 
 
 
 
 
 
 
 
8fea73b
 
de34da3
 
 
 
 
 
 
 
 
14451ef
 
 
de34da3
 
 
 
 
 
 
14451ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de34da3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14451ef
de34da3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
056b358
 
de34da3
 
 
056b358
 
de34da3
 
 
 
 
 
 
 
 
 
 
 
056b358
de34da3
056b358
 
de34da3
 
056b358
de34da3
 
 
 
 
 
 
 
 
056b358
de34da3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8fea73b
 
de34da3
8fea73b
 
de34da3
8fea73b
 
 
 
 
 
 
 
 
de34da3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72df8c8
de34da3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72df8c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de34da3
8fea73b
de34da3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8fea73b
de34da3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
import nltk
import einops
import torch
import torch.nn.functional as F
import torchvision.utils
from torch_kmeans import KMeans

import os

import injection_utils
import utils


class BoundedAttention(injection_utils.AttentionBase):
    EPSILON = 1e-5
    FILTER_TAGS = {
        'CC', 'CD', 'DT', 'EX', 'IN', 'LS', 'MD', 'PDT', 'POS', 'PRP', 'PRP$', 'RP', 'TO', 'UH', 'WDT', 'WP', 'WRB'}
    TAG_RULES = {'left': 'IN', 'right': 'IN', 'top': 'IN', 'bottom': 'IN'}

    def __init__(
        self,
        boxes,
        prompts,
        cross_loss_layers,
        self_loss_layers,
        subject_sub_prompts=None,
        subject_token_indices=None,
        cross_mask_layers=None,
        self_mask_layers=None,
        eos_token_index=None,
        filter_token_indices=None,
        leading_token_indices=None,
        mask_cross_during_guidance=True,
        mask_eos=True,
        cross_loss_coef=1,
        self_loss_coef=1,
        max_guidance_iter=15,
        max_guidance_iter_per_step=5,
        start_step_size=30,
        end_step_size=10,
        loss_stopping_value=0.2,
        min_clustering_step=15,
        cross_mask_threshold=0.2,
        self_mask_threshold=0.2,
        delta_refine_mask_steps=5,
        pca_rank=None,
        num_clusters=None,
        num_clusters_per_box=3,
        max_resolution=None,
        map_dir=None,
        debug=False,
        delta_debug_attention_steps=20,
        delta_debug_mask_steps=5,
        debug_layers=None,
        saved_resolution=64,
    ):
        super().__init__()
        self.boxes = boxes
        self.prompts = prompts
        self.subject_sub_prompts = subject_sub_prompts
        self.subject_token_indices = subject_token_indices
        self.cross_loss_layers = set(cross_loss_layers)
        self.self_loss_layers = set(self_loss_layers)
        self.cross_mask_layers = self.cross_loss_layers if cross_mask_layers is None else set(cross_mask_layers)
        self.self_mask_layers = self.self_loss_layers if self_mask_layers is None else set(self_mask_layers)

        self.eos_token_index = eos_token_index
        self.filter_token_indices = filter_token_indices
        self.leading_token_indices = leading_token_indices
        self.mask_cross_during_guidance = mask_cross_during_guidance
        self.mask_eos = mask_eos
        self.cross_loss_coef = cross_loss_coef
        self.self_loss_coef = self_loss_coef
        self.max_guidance_iter = max_guidance_iter
        self.max_guidance_iter_per_step = max_guidance_iter_per_step
        self.start_step_size = start_step_size
        self.step_size_coef = (end_step_size - start_step_size) / max_guidance_iter
        self.loss_stopping_value = loss_stopping_value
        self.min_clustering_step = min_clustering_step
        self.cross_mask_threshold = cross_mask_threshold
        self.self_mask_threshold = self_mask_threshold

        self.delta_refine_mask_steps = delta_refine_mask_steps
        self.pca_rank = pca_rank
        num_clusters = len(boxes) * num_clusters_per_box if num_clusters is None else num_clusters
        self.clustering = KMeans(n_clusters=num_clusters, num_init=100)
        self.centers = None

        self.max_resolution = max_resolution
        self.map_dir = map_dir
        self.debug = debug
        self.delta_debug_attention_steps = delta_debug_attention_steps
        self.delta_debug_mask_steps = delta_debug_mask_steps
        self.debug_layers = self.cross_loss_layers | self.self_loss_layers if debug_layers is None else debug_layers
        self.saved_resolution = saved_resolution

        self.optimized = False
        self.cross_foreground_values = []
        self.self_foreground_values = []
        self.cross_background_values = []
        self.self_background_values = []
        self.mean_cross_map = 0
        self.num_cross_maps = 0
        self.mean_self_map = 0
        self.num_self_maps = 0
        self.self_masks = None

    def clear_values(self, include_maps=False):
        lists = (
            self.cross_foreground_values,
            self.self_foreground_values,
            self.cross_background_values,
            self.self_background_values,
        )

        for values in lists:
            values.clear()

        if include_maps:
            self.mean_cross_map = 0
            self.num_cross_maps = 0
            self.mean_self_map = 0
            self.num_self_maps = 0

    def before_step(self):
        self.clear_values()
        if self.cur_step == 0:
            self._determine_tokens()

    def reset(self):
        self.clear_values(include_maps=True)
        super().reset()

    def forward(self, q, k, v, is_cross, place_in_unet, num_heads, **kwargs):
        batch_size = q.size(0) // num_heads
        n = q.size(1)
        d = k.size(1)
        dtype = q.dtype
        device = q.device
        if is_cross:
            masks = self._hide_other_subjects_from_tokens(batch_size // 2, n, d, dtype, device)
        else:
            masks = self._hide_other_subjects_from_subjects(batch_size // 2, n, dtype, device)

        resolution = int(n ** 0.5)
        if (self.max_resolution is not None) and (resolution > self.max_resolution):
            return super().forward(q, k, v, is_cross, place_in_unet, num_heads, mask=masks)

        sim = torch.einsum('b i d, b j d -> b i j', q, k) * kwargs['scale']
        attn = sim.softmax(-1)
        self._display_attention_maps(attn, is_cross, num_heads)
        sim = sim.reshape(batch_size, num_heads, n, d) + masks
        attn = sim.reshape(-1, n, d).softmax(-1)
        self._save(attn, is_cross, num_heads)
        self._display_attention_maps(attn, is_cross, num_heads, prefix='masked')
        self._debug_hook(q, k, v, sim, attn, is_cross, place_in_unet, num_heads, **kwargs)
        out = torch.bmm(attn, v)
        return einops.rearrange(out, '(b h) n d -> b n (h d)', h=num_heads)

    def update_loss(self, forward_pass, latents, i):
        if i >= self.max_guidance_iter:
            return latents

        step_size = self.start_step_size + self.step_size_coef * i

        self.optimized = True
        normalized_loss = torch.tensor(10000)
        with torch.enable_grad():
            latents = latents.clone().detach().requires_grad_(True)
            for guidance_iter in range(self.max_guidance_iter_per_step):
                if normalized_loss < self.loss_stopping_value:
                    break

                latent_model_input = torch.cat([latents] * 2)
                cur_step = self.cur_step
                forward_pass(latent_model_input)
                self.cur_step = cur_step

                loss, normalized_loss = self._compute_loss()
                grad_cond = torch.autograd.grad(loss, [latents])[0]
                latents = latents - step_size * grad_cond
                if self.debug:
                    print(f'Loss at step={i}, iter={guidance_iter}: {normalized_loss}')
                    grad_norms = grad_cond.flatten(start_dim=2).norm(dim=1)
                    grad_norms = grad_norms / grad_norms.max(dim=1, keepdim=True)[0]
                    self._save_maps(grad_norms, 'grad_norms')

        self.optimized = False
        return latents

    def _tokenize(self, prompt=None):
        prompt = self.prompts[0] if prompt is None else prompt
        ids = self.model.tokenizer.encode(prompt)
        tokens = self.model.tokenizer.convert_ids_to_tokens(ids, skip_special_tokens=True)
        return [token[:-4] for token in tokens]  # remove ending </w>

    def _tag_tokens(self):
        tagged_tokens = nltk.pos_tag(self._tokenize())
        return [type(self).TAG_RULES.get(token, tag) for token, tag in tagged_tokens]

    def _determine_subject_tokens(self):
        if self.subject_token_indices is not None:
            return

        if self.subject_sub_prompts is None:
            raise ValueError('Missing subject sub-prompts.')

        tokens = self._tokenize()

        matches = []
        self.subject_token_indices = []
        for sub_prompt in self.subject_sub_prompts:
            token_indices = self._determine_specific_subject_tokens(tokens, sub_prompt, matches)
            matches.append(token_indices[0])
            self.subject_token_indices.append(token_indices)

    def _determine_specific_subject_tokens(self, tokens, sub_prompt, previous_matches):
        sub_tokens = self._tokenize(sub_prompt)
        sub_len = len(sub_tokens)

        matches = []
        for i in range(len(tokens)):
            if tokens[i] == sub_tokens[0] and tokens[i:i + sub_len] == sub_tokens:
                matches.append(i + 1)

        if len(matches) == 0:
            raise ValueError(f'Couldn\'t locate sub-prompt: {sub_prompt}.')

        new_matches = [i for i in matches if i not in previous_matches]
        last_match = new_matches[0] if len(new_matches) > 0 else matches[-1]
        return list(range(last_match, last_match + sub_len))

    def _determine_eos_token(self):
        tokens = self._tokenize()
        eos_token_index = len(tokens) + 1
        if self.eos_token_index is None:
            self.eos_token_index = eos_token_index
        elif eos_token_index != self.eos_token_index:
            raise ValueError(f'Wrong EOS token index. Tokens are: {tokens}.')

    def _determine_filter_tokens(self):
        if self.filter_token_indices is not None:
            return

        tags = self._tag_tokens()
        self.filter_token_indices = [i + 1 for i, tag in enumerate(tags) if tag in type(self).FILTER_TAGS]

    def _determine_leading_tokens(self):
        if self.leading_token_indices is not None:
            return

        tags = self._tag_tokens()
        leading_token_indices = []
        for indices in self.subject_token_indices:
            subject_noun_indices = [i for i in indices if tags[i - 1].startswith('NN')]
            leading_token_candidates = subject_noun_indices if len(subject_noun_indices) > 0 else indices
            leading_token_indices.append(leading_token_candidates[-1])

        self.leading_token_indices = leading_token_indices

    def _determine_tokens(self):
        self._determine_subject_tokens()
        self._determine_eos_token()
        self._determine_filter_tokens()
        self._determine_leading_tokens()

    def _split_references(self, tensor, num_heads):
        tensor = tensor.reshape(-1, num_heads, *tensor.shape[1:])
        unconditional, conditional = tensor.chunk(2)

        num_subjects = len(self.boxes)
        batch_unconditional = unconditional[:-num_subjects]
        references_unconditional = unconditional[-num_subjects:]
        batch_conditional = conditional[:-num_subjects]
        references_conditional = conditional[-num_subjects:]

        batch = torch.cat((batch_unconditional, batch_conditional))
        references = torch.cat((references_unconditional, references_conditional))
        batch = batch.reshape(-1, *batch_unconditional.shape[2:])
        references = references.reshape(-1, *references_unconditional.shape[2:])
        return batch, references

    def _hide_other_subjects_from_tokens(self, batch_size, n, d, dtype, device):  # b h i j
        resolution = int(n ** 0.5)
        subject_masks, background_masks = self._obtain_masks(resolution, batch_size=batch_size, device=device)  # b s n
        include_background = self.optimized or (not self.mask_cross_during_guidance and self.cur_step < self.max_guidance_iter_per_step)
        subject_masks = torch.logical_or(subject_masks, background_masks.unsqueeze(1)) if include_background else subject_masks
        min_value = torch.finfo(dtype).min
        sim_masks = torch.zeros((batch_size, n, d), dtype=dtype, device=device)  # b i j
        for token_indices in (*self.subject_token_indices, self.filter_token_indices):
            sim_masks[:, :, token_indices] = min_value

        for batch_index in range(batch_size):
            for subject_mask, token_indices in zip(subject_masks[batch_index], self.subject_token_indices):
                for token_index in token_indices:
                    sim_masks[batch_index, subject_mask, token_index] = 0

        if self.mask_eos and not include_background:
            for batch_index, background_mask in zip(range(batch_size), background_masks):
                sim_masks[batch_index, background_mask, self.eos_token_index] = min_value

        return torch.cat((torch.zeros_like(sim_masks), sim_masks)).unsqueeze(1)

    def _hide_other_subjects_from_subjects(self, batch_size, n, dtype, device):  # b h i j
        resolution = int(n ** 0.5)
        subject_masks, background_masks = self._obtain_masks(resolution, batch_size=batch_size, device=device)  # b s n
        min_value = torch.finfo(dtype).min
        sim_masks = torch.zeros((batch_size, n, n), dtype=dtype, device=device)  # b i j
        for batch_index, background_mask in zip(range(batch_size), background_masks):
            sim_masks[batch_index, ~background_mask, ~background_mask] = min_value

        for batch_index in range(batch_size):
            for subject_mask in subject_masks[batch_index]:
                subject_sim_mask = sim_masks[batch_index, subject_mask]
                condition = torch.logical_or(subject_sim_mask == 0, subject_mask.unsqueeze(0))
                sim_masks[batch_index, subject_mask] = torch.where(condition, 0, min_value).to(dtype=dtype)

        return torch.cat((sim_masks, sim_masks)).unsqueeze(1)

    def _save(self, attn, is_cross, num_heads):
        _, attn = attn.chunk(2)
        attn = attn.reshape(-1, num_heads, *attn.shape[-2:])  # b h n k

        self._save_mask_maps(attn, is_cross)
        self._save_loss_values(attn, is_cross)

    def _save_mask_maps(self, attn, is_cross):
        if (
            (self.optimized) or
            (is_cross and self.cur_att_layer not in self.cross_mask_layers) or
            ((not is_cross) and (self.cur_att_layer not in self.self_mask_layers))
        ):
            return

        if is_cross:
            attn = attn[..., self.leading_token_indices]
            mean_map = self.mean_cross_map
            num_maps = self.num_cross_maps
        else:
            mean_map = self.mean_self_map
            num_maps = self.num_self_maps

        num_maps += 1
        attn = attn.mean(dim=1)  # mean over heads
        mean_map = ((num_maps - 1) / num_maps) * mean_map +  (1 / num_maps) * attn
        if is_cross:
            self.mean_cross_map = mean_map
            self.num_cross_maps = num_maps
        else:
            self.mean_self_map = mean_map
            self.num_self_maps = num_maps

    def _save_loss_values(self, attn, is_cross):
        if (
            (not self.optimized) or
            (is_cross and (self.cur_att_layer not in self.cross_loss_layers)) or
            ((not is_cross) and (self.cur_att_layer not in self.self_loss_layers))
        ):
            return

        resolution = int(attn.size(2) ** 0.5)
        boxes = self._convert_boxes_to_masks(resolution, device=attn.device)  # s n
        background_mask = boxes.sum(dim=0) == 0

        if is_cross:
            saved_foreground_values = self.cross_foreground_values
            saved_background_values = self.cross_background_values
            contexts = [indices + [self.eos_token_index] for indices in self.subject_token_indices]  # TODO: fix EOS loss term
        else:
            saved_foreground_values = self.self_foreground_values
            saved_background_values = self.self_background_values
            contexts = boxes

        foreground_values = []
        background_values = []
        for i, (box, context) in enumerate(zip(boxes, contexts)):
            context_attn = attn[:, :, :, context]
            
            # sum over heads, pixels and contexts
            foreground_values.append(context_attn[:, :, box].sum(dim=(1, 2, 3)))
            background_values.append(context_attn[:, :, background_mask].sum(dim=(1, 2, 3)))

        saved_foreground_values.append(torch.stack(foreground_values, dim=1))
        saved_background_values.append(torch.stack(background_values, dim=1))

    def _compute_loss(self):
        cross_losses = self._compute_loss_term(self.cross_foreground_values, self.cross_background_values)
        self_losses = self._compute_loss_term(self.self_foreground_values, self.self_background_values)
        b, s = cross_losses.shape

        # sum over samples and subjects
        total_cross_loss = cross_losses.sum()
        total_self_loss = self_losses.sum()

        loss = self.cross_loss_coef * total_cross_loss + self.self_loss_coef * total_self_loss
        normalized_loss = loss / b / s
        return loss, normalized_loss

    def _compute_loss_term(self, foreground_values, background_values):
        # mean over layers
        mean_foreground = torch.stack(foreground_values).mean(dim=0)
        mean_background = torch.stack(background_values).mean(dim=0)
        iou = mean_foreground / (mean_foreground + len(self.boxes) * mean_background)
        return (1 - iou) ** 2

    def _obtain_masks(self, resolution, return_boxes=False, return_existing=False, batch_size=None, device=None):
        return_boxes = return_boxes or (return_existing and self.self_masks is None)
        if return_boxes or self.cur_step < self.min_clustering_step:
            masks = self._convert_boxes_to_masks(resolution, device=device).unsqueeze(0)
            if batch_size is not None:
                masks = masks.expand(batch_size, *masks.shape[1:])
        else:
            masks = self._obtain_self_masks(resolution, return_existing=return_existing)
            if device is not None:
                masks = masks.to(device=device)

        background_mask = masks.sum(dim=1) == 0
        return masks, background_mask

    def _convert_boxes_to_masks(self, resolution, device=None):  # s n
        boxes = torch.zeros(len(self.boxes), resolution, resolution, dtype=bool, device=device)
        for i, box in enumerate(self.boxes):
            x0, x1 = box[0] * resolution, box[2] * resolution
            y0, y1 = box[1] * resolution, box[3] * resolution

            boxes[i, round(y0) : round(y1), round(x0) : round(x1)] = True

        return boxes.flatten(start_dim=1)

    def _obtain_self_masks(self, resolution, return_existing=False):
        if (
            (self.self_masks is None) or
            (
                (self.cur_step % self.delta_refine_mask_steps == 0) and
                (self.cur_att_layer == 0) and
                (not return_existing)
            )
        ):
            self.self_masks = self._fix_zero_masks(self._build_self_masks())

        b, s, n = self.self_masks.shape
        mask_resolution = int(n ** 0.5)
        self_masks = self.self_masks.reshape(b, s, mask_resolution, mask_resolution).float()
        self_masks = F.interpolate(self_masks, resolution, mode='nearest-exact')
        return self_masks.flatten(start_dim=2).bool()

    def _build_self_masks(self):
        c, clusters = self._cluster_self_maps()  # b n
        cluster_masks = torch.stack([(clusters == cluster_index) for cluster_index in range(c)], dim=2)  # b n c
        cluster_area = cluster_masks.sum(dim=1, keepdim=True)  # b 1 c

        n = clusters.size(1)
        resolution = int(n ** 0.5)
        cross_masks = self._obtain_cross_masks(resolution)  # b s n
        cross_mask_area = cross_masks.sum(dim=2, keepdim=True)  # b s 1

        intersection = torch.bmm(cross_masks.float(), cluster_masks.float())  # b s c
        min_area = torch.minimum(cross_mask_area, cluster_area)  # b s c
        score_per_cluster, subject_per_cluster = torch.max(intersection / min_area, dim=1)  # b c
        subjects = torch.gather(subject_per_cluster, 1, clusters)  # b n
        scores = torch.gather(score_per_cluster, 1, clusters)  # b n

        s = cross_masks.size(1)
        self_masks = torch.stack([(subjects == subject_index) for subject_index in range(s)], dim=1)  # b s n
        scores = scores.unsqueeze(1).expand(-1 ,s, n)  # b s n
        self_masks[scores < self.self_mask_threshold] = False
        self._save_maps(self_masks, 'self_masks')
        return self_masks

    def _cluster_self_maps(self):  # b s n
        self_maps = self._compute_maps(self.mean_self_map)  # b n m
        if self.pca_rank is not None:
            dtype = self_maps.dtype
            _, _, eigen_vectors = torch.pca_lowrank(self_maps.float(), self.pca_rank)
            self_maps = torch.matmul(self_maps, eigen_vectors.to(dtype=dtype))

        clustering_results = self.clustering(self_maps, centers=self.centers)
        self.clustering.num_init = 1  # clustering is deterministic after the first time
        self.centers = clustering_results.centers
        clusters = clustering_results.labels
        num_clusters = self.clustering.n_clusters
        self._save_maps(clusters / num_clusters, f'clusters')
        return num_clusters, clusters

    def _obtain_cross_masks(self, resolution, scale=10):
        maps = self._compute_maps(self.mean_cross_map, resolution=resolution)  # b n k
        maps = F.sigmoid(scale * (maps - self.cross_mask_threshold))
        maps = self._normalize_maps(maps, reduce_min=True)
        maps = maps.transpose(1, 2)  # b k n
        existing_masks, _ = self._obtain_masks(
            resolution, return_existing=True, batch_size=maps.size(0), device=maps.device)
        maps = maps * existing_masks.to(dtype=maps.dtype)
        self._save_maps(maps, 'cross_masks')
        return maps

    def _fix_zero_masks(self, masks):
        b, s, n = masks.shape
        resolution = int(n ** 0.5)
        boxes = self._convert_boxes_to_masks(resolution, device=masks.device)  # s n

        for i in range(b):
            for j in range(s):
                if masks[i, j].sum() == 0:
                    print('******Found a zero mask!******')
                    for k in range(s):
                        masks[i, k] = boxes[j] if (k == j) else masks[i, k].logical_and(~boxes[j])

        return masks

    def _compute_maps(self, maps, resolution=None):  # b n k
        if resolution is not None:
            b, n, k = maps.shape
            original_resolution = int(n ** 0.5)
            maps = maps.transpose(1, 2).reshape(b, k, original_resolution, original_resolution)
            maps = F.interpolate(maps, resolution, mode='bilinear', antialias=True)
            maps = maps.reshape(b, k, -1).transpose(1, 2)

        maps = self._normalize_maps(maps)
        return maps

    @classmethod
    def _normalize_maps(cls, maps, reduce_min=False):  # b n k
        max_values = maps.max(dim=1, keepdim=True)[0]
        min_values = maps.min(dim=1, keepdim=True)[0] if reduce_min else 0
        numerator = maps - min_values
        denominator = max_values - min_values + cls.EPSILON
        return numerator / denominator

    def _save_maps(self, maps, prefix):
        if self.map_dir is None or self.cur_step % self.delta_debug_mask_steps != 0:
            return

        resolution = int(maps.size(-1) ** 0.5)
        maps = maps.reshape(-1, 1, resolution, resolution).float()
        maps = F.interpolate(maps, self.saved_resolution, mode='bilinear', antialias=True)
        path = os.path.join(self.map_dir, f'map_{prefix}_{self.cur_step}_{self.cur_att_layer}.png')
        torchvision.utils.save_image(maps, path)

    def _display_attention_maps(self, attention_maps, is_cross, num_heads, prefix=None):
        if (not self.debug) or (self.cur_step == 0) or (self.cur_step % self.delta_debug_attention_steps > 0) or (self.cur_att_layer not in self.debug_layers):
            return

        dir_name = self.map_dir
        if prefix is not None:
            splits = list(os.path.split(dir_name))
            splits[-1] = '_'.join((prefix, splits[-1]))
            dir_name = os.path.join(*splits)

        resolution = int(attention_maps.size(-2) ** 0.5)
        if is_cross:
            attention_maps = einops.rearrange(attention_maps, 'b (r1 r2) k -> b k r1 r2', r1=resolution)
            attention_maps = F.interpolate(attention_maps, self.saved_resolution, mode='bilinear', antialias=True)
            attention_maps = einops.rearrange(attention_maps, 'b k r1 r2 -> b (r1 r2) k')

        utils.display_attention_maps(
            attention_maps,
            is_cross,
            num_heads,
            self.model.tokenizer,
            self.prompts,
            dir_name,
            self.cur_step,
            self.cur_att_layer,
            resolution,
        )

    def _debug_hook(self, q, k, v, sim, attn, is_cross, place_in_unet, num_heads, **kwargs):
        pass