Spaces:
Running
on
Zero
Running
on
Zero
File size: 24,567 Bytes
de34da3 14451ef de34da3 72df8c8 de34da3 8fea73b de34da3 14451ef de34da3 72df8c8 de34da3 056b358 de34da3 8fea73b de34da3 8fea73b de34da3 056b358 de34da3 056b358 de34da3 056b358 8fea73b de34da3 8fea73b de34da3 8fea73b de34da3 14451ef de34da3 14451ef de34da3 14451ef de34da3 056b358 de34da3 056b358 de34da3 056b358 de34da3 056b358 de34da3 056b358 de34da3 056b358 de34da3 8fea73b de34da3 8fea73b de34da3 8fea73b de34da3 72df8c8 de34da3 72df8c8 de34da3 8fea73b de34da3 8fea73b de34da3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 |
import nltk
import einops
import torch
import torch.nn.functional as F
import torchvision.utils
from torch_kmeans import KMeans
import os
import injection_utils
import utils
class BoundedAttention(injection_utils.AttentionBase):
EPSILON = 1e-5
FILTER_TAGS = {
'CC', 'CD', 'DT', 'EX', 'IN', 'LS', 'MD', 'PDT', 'POS', 'PRP', 'PRP$', 'RP', 'TO', 'UH', 'WDT', 'WP', 'WRB'}
TAG_RULES = {'left': 'IN', 'right': 'IN', 'top': 'IN', 'bottom': 'IN'}
def __init__(
self,
boxes,
prompts,
cross_loss_layers,
self_loss_layers,
subject_sub_prompts=None,
subject_token_indices=None,
cross_mask_layers=None,
self_mask_layers=None,
eos_token_index=None,
filter_token_indices=None,
leading_token_indices=None,
mask_cross_during_guidance=True,
mask_eos=True,
cross_loss_coef=1,
self_loss_coef=1,
max_guidance_iter=15,
max_guidance_iter_per_step=5,
start_step_size=30,
end_step_size=10,
loss_stopping_value=0.2,
min_clustering_step=15,
cross_mask_threshold=0.2,
self_mask_threshold=0.2,
delta_refine_mask_steps=5,
pca_rank=None,
num_clusters=None,
num_clusters_per_box=3,
max_resolution=None,
map_dir=None,
debug=False,
delta_debug_attention_steps=20,
delta_debug_mask_steps=5,
debug_layers=None,
saved_resolution=64,
):
super().__init__()
self.boxes = boxes
self.prompts = prompts
self.subject_sub_prompts = subject_sub_prompts
self.subject_token_indices = subject_token_indices
self.cross_loss_layers = set(cross_loss_layers)
self.self_loss_layers = set(self_loss_layers)
self.cross_mask_layers = self.cross_loss_layers if cross_mask_layers is None else set(cross_mask_layers)
self.self_mask_layers = self.self_loss_layers if self_mask_layers is None else set(self_mask_layers)
self.eos_token_index = eos_token_index
self.filter_token_indices = filter_token_indices
self.leading_token_indices = leading_token_indices
self.mask_cross_during_guidance = mask_cross_during_guidance
self.mask_eos = mask_eos
self.cross_loss_coef = cross_loss_coef
self.self_loss_coef = self_loss_coef
self.max_guidance_iter = max_guidance_iter
self.max_guidance_iter_per_step = max_guidance_iter_per_step
self.start_step_size = start_step_size
self.step_size_coef = (end_step_size - start_step_size) / max_guidance_iter
self.loss_stopping_value = loss_stopping_value
self.min_clustering_step = min_clustering_step
self.cross_mask_threshold = cross_mask_threshold
self.self_mask_threshold = self_mask_threshold
self.delta_refine_mask_steps = delta_refine_mask_steps
self.pca_rank = pca_rank
num_clusters = len(boxes) * num_clusters_per_box if num_clusters is None else num_clusters
self.clustering = KMeans(n_clusters=num_clusters, num_init=100)
self.centers = None
self.max_resolution = max_resolution
self.map_dir = map_dir
self.debug = debug
self.delta_debug_attention_steps = delta_debug_attention_steps
self.delta_debug_mask_steps = delta_debug_mask_steps
self.debug_layers = self.cross_loss_layers | self.self_loss_layers if debug_layers is None else debug_layers
self.saved_resolution = saved_resolution
self.optimized = False
self.cross_foreground_values = []
self.self_foreground_values = []
self.cross_background_values = []
self.self_background_values = []
self.mean_cross_map = 0
self.num_cross_maps = 0
self.mean_self_map = 0
self.num_self_maps = 0
self.self_masks = None
def clear_values(self, include_maps=False):
lists = (
self.cross_foreground_values,
self.self_foreground_values,
self.cross_background_values,
self.self_background_values,
)
for values in lists:
values.clear()
if include_maps:
self.mean_cross_map = 0
self.num_cross_maps = 0
self.mean_self_map = 0
self.num_self_maps = 0
def before_step(self):
self.clear_values()
if self.cur_step == 0:
self._determine_tokens()
def reset(self):
self.clear_values(include_maps=True)
super().reset()
def forward(self, q, k, v, is_cross, place_in_unet, num_heads, **kwargs):
batch_size = q.size(0) // num_heads
n = q.size(1)
d = k.size(1)
dtype = q.dtype
device = q.device
if is_cross:
masks = self._hide_other_subjects_from_tokens(batch_size // 2, n, d, dtype, device)
else:
masks = self._hide_other_subjects_from_subjects(batch_size // 2, n, dtype, device)
resolution = int(n ** 0.5)
if (self.max_resolution is not None) and (resolution > self.max_resolution):
return super().forward(q, k, v, is_cross, place_in_unet, num_heads, mask=masks)
sim = torch.einsum('b i d, b j d -> b i j', q, k) * kwargs['scale']
attn = sim.softmax(-1)
self._display_attention_maps(attn, is_cross, num_heads)
sim = sim.reshape(batch_size, num_heads, n, d) + masks
attn = sim.reshape(-1, n, d).softmax(-1)
self._save(attn, is_cross, num_heads)
self._display_attention_maps(attn, is_cross, num_heads, prefix='masked')
self._debug_hook(q, k, v, sim, attn, is_cross, place_in_unet, num_heads, **kwargs)
out = torch.bmm(attn, v)
return einops.rearrange(out, '(b h) n d -> b n (h d)', h=num_heads)
def update_loss(self, forward_pass, latents, i):
if i >= self.max_guidance_iter:
return latents
step_size = self.start_step_size + self.step_size_coef * i
self.optimized = True
normalized_loss = torch.tensor(10000)
with torch.enable_grad():
latents = latents.clone().detach().requires_grad_(True)
for guidance_iter in range(self.max_guidance_iter_per_step):
if normalized_loss < self.loss_stopping_value:
break
latent_model_input = torch.cat([latents] * 2)
cur_step = self.cur_step
forward_pass(latent_model_input)
self.cur_step = cur_step
loss, normalized_loss = self._compute_loss()
grad_cond = torch.autograd.grad(loss, [latents])[0]
latents = latents - step_size * grad_cond
if self.debug:
print(f'Loss at step={i}, iter={guidance_iter}: {normalized_loss}')
grad_norms = grad_cond.flatten(start_dim=2).norm(dim=1)
grad_norms = grad_norms / grad_norms.max(dim=1, keepdim=True)[0]
self._save_maps(grad_norms, 'grad_norms')
self.optimized = False
return latents
def _tokenize(self, prompt=None):
prompt = self.prompts[0] if prompt is None else prompt
ids = self.model.tokenizer.encode(prompt)
tokens = self.model.tokenizer.convert_ids_to_tokens(ids, skip_special_tokens=True)
return [token[:-4] for token in tokens] # remove ending </w>
def _tag_tokens(self):
tagged_tokens = nltk.pos_tag(self._tokenize())
return [type(self).TAG_RULES.get(token, tag) for token, tag in tagged_tokens]
def _determine_subject_tokens(self):
if self.subject_token_indices is not None:
return
if self.subject_sub_prompts is None:
raise ValueError('Missing subject sub-prompts.')
tokens = self._tokenize()
matches = []
self.subject_token_indices = []
for sub_prompt in self.subject_sub_prompts:
token_indices = self._determine_specific_subject_tokens(tokens, sub_prompt, matches)
matches.append(token_indices[0])
self.subject_token_indices.append(token_indices)
def _determine_specific_subject_tokens(self, tokens, sub_prompt, previous_matches):
sub_tokens = self._tokenize(sub_prompt)
sub_len = len(sub_tokens)
matches = []
for i in range(len(tokens)):
if tokens[i] == sub_tokens[0] and tokens[i:i + sub_len] == sub_tokens:
matches.append(i + 1)
if len(matches) == 0:
raise ValueError(f'Couldn\'t locate sub-prompt: {sub_prompt}.')
new_matches = [i for i in matches if i not in previous_matches]
last_match = new_matches[0] if len(new_matches) > 0 else matches[-1]
return list(range(last_match, last_match + sub_len))
def _determine_eos_token(self):
tokens = self._tokenize()
eos_token_index = len(tokens) + 1
if self.eos_token_index is None:
self.eos_token_index = eos_token_index
elif eos_token_index != self.eos_token_index:
raise ValueError(f'Wrong EOS token index. Tokens are: {tokens}.')
def _determine_filter_tokens(self):
if self.filter_token_indices is not None:
return
tags = self._tag_tokens()
self.filter_token_indices = [i + 1 for i, tag in enumerate(tags) if tag in type(self).FILTER_TAGS]
def _determine_leading_tokens(self):
if self.leading_token_indices is not None:
return
tags = self._tag_tokens()
leading_token_indices = []
for indices in self.subject_token_indices:
subject_noun_indices = [i for i in indices if tags[i - 1].startswith('NN')]
leading_token_candidates = subject_noun_indices if len(subject_noun_indices) > 0 else indices
leading_token_indices.append(leading_token_candidates[-1])
self.leading_token_indices = leading_token_indices
def _determine_tokens(self):
self._determine_subject_tokens()
self._determine_eos_token()
self._determine_filter_tokens()
self._determine_leading_tokens()
def _split_references(self, tensor, num_heads):
tensor = tensor.reshape(-1, num_heads, *tensor.shape[1:])
unconditional, conditional = tensor.chunk(2)
num_subjects = len(self.boxes)
batch_unconditional = unconditional[:-num_subjects]
references_unconditional = unconditional[-num_subjects:]
batch_conditional = conditional[:-num_subjects]
references_conditional = conditional[-num_subjects:]
batch = torch.cat((batch_unconditional, batch_conditional))
references = torch.cat((references_unconditional, references_conditional))
batch = batch.reshape(-1, *batch_unconditional.shape[2:])
references = references.reshape(-1, *references_unconditional.shape[2:])
return batch, references
def _hide_other_subjects_from_tokens(self, batch_size, n, d, dtype, device): # b h i j
resolution = int(n ** 0.5)
subject_masks, background_masks = self._obtain_masks(resolution, batch_size=batch_size, device=device) # b s n
include_background = self.optimized or (not self.mask_cross_during_guidance and self.cur_step < self.max_guidance_iter_per_step)
subject_masks = torch.logical_or(subject_masks, background_masks.unsqueeze(1)) if include_background else subject_masks
min_value = torch.finfo(dtype).min
sim_masks = torch.zeros((batch_size, n, d), dtype=dtype, device=device) # b i j
for token_indices in (*self.subject_token_indices, self.filter_token_indices):
sim_masks[:, :, token_indices] = min_value
for batch_index in range(batch_size):
for subject_mask, token_indices in zip(subject_masks[batch_index], self.subject_token_indices):
for token_index in token_indices:
sim_masks[batch_index, subject_mask, token_index] = 0
if self.mask_eos and not include_background:
for batch_index, background_mask in zip(range(batch_size), background_masks):
sim_masks[batch_index, background_mask, self.eos_token_index] = min_value
return torch.cat((torch.zeros_like(sim_masks), sim_masks)).unsqueeze(1)
def _hide_other_subjects_from_subjects(self, batch_size, n, dtype, device): # b h i j
resolution = int(n ** 0.5)
subject_masks, background_masks = self._obtain_masks(resolution, batch_size=batch_size, device=device) # b s n
min_value = torch.finfo(dtype).min
sim_masks = torch.zeros((batch_size, n, n), dtype=dtype, device=device) # b i j
for batch_index, background_mask in zip(range(batch_size), background_masks):
sim_masks[batch_index, ~background_mask, ~background_mask] = min_value
for batch_index in range(batch_size):
for subject_mask in subject_masks[batch_index]:
subject_sim_mask = sim_masks[batch_index, subject_mask]
condition = torch.logical_or(subject_sim_mask == 0, subject_mask.unsqueeze(0))
sim_masks[batch_index, subject_mask] = torch.where(condition, 0, min_value).to(dtype=dtype)
return torch.cat((sim_masks, sim_masks)).unsqueeze(1)
def _save(self, attn, is_cross, num_heads):
_, attn = attn.chunk(2)
attn = attn.reshape(-1, num_heads, *attn.shape[-2:]) # b h n k
self._save_mask_maps(attn, is_cross)
self._save_loss_values(attn, is_cross)
def _save_mask_maps(self, attn, is_cross):
if (
(self.optimized) or
(is_cross and self.cur_att_layer not in self.cross_mask_layers) or
((not is_cross) and (self.cur_att_layer not in self.self_mask_layers))
):
return
if is_cross:
attn = attn[..., self.leading_token_indices]
mean_map = self.mean_cross_map
num_maps = self.num_cross_maps
else:
mean_map = self.mean_self_map
num_maps = self.num_self_maps
num_maps += 1
attn = attn.mean(dim=1) # mean over heads
mean_map = ((num_maps - 1) / num_maps) * mean_map + (1 / num_maps) * attn
if is_cross:
self.mean_cross_map = mean_map
self.num_cross_maps = num_maps
else:
self.mean_self_map = mean_map
self.num_self_maps = num_maps
def _save_loss_values(self, attn, is_cross):
if (
(not self.optimized) or
(is_cross and (self.cur_att_layer not in self.cross_loss_layers)) or
((not is_cross) and (self.cur_att_layer not in self.self_loss_layers))
):
return
resolution = int(attn.size(2) ** 0.5)
boxes = self._convert_boxes_to_masks(resolution, device=attn.device) # s n
background_mask = boxes.sum(dim=0) == 0
if is_cross:
saved_foreground_values = self.cross_foreground_values
saved_background_values = self.cross_background_values
contexts = [indices + [self.eos_token_index] for indices in self.subject_token_indices] # TODO: fix EOS loss term
else:
saved_foreground_values = self.self_foreground_values
saved_background_values = self.self_background_values
contexts = boxes
foreground_values = []
background_values = []
for i, (box, context) in enumerate(zip(boxes, contexts)):
context_attn = attn[:, :, :, context]
# sum over heads, pixels and contexts
foreground_values.append(context_attn[:, :, box].sum(dim=(1, 2, 3)))
background_values.append(context_attn[:, :, background_mask].sum(dim=(1, 2, 3)))
saved_foreground_values.append(torch.stack(foreground_values, dim=1))
saved_background_values.append(torch.stack(background_values, dim=1))
def _compute_loss(self):
cross_losses = self._compute_loss_term(self.cross_foreground_values, self.cross_background_values)
self_losses = self._compute_loss_term(self.self_foreground_values, self.self_background_values)
b, s = cross_losses.shape
# sum over samples and subjects
total_cross_loss = cross_losses.sum()
total_self_loss = self_losses.sum()
loss = self.cross_loss_coef * total_cross_loss + self.self_loss_coef * total_self_loss
normalized_loss = loss / b / s
return loss, normalized_loss
def _compute_loss_term(self, foreground_values, background_values):
# mean over layers
mean_foreground = torch.stack(foreground_values).mean(dim=0)
mean_background = torch.stack(background_values).mean(dim=0)
iou = mean_foreground / (mean_foreground + len(self.boxes) * mean_background)
return (1 - iou) ** 2
def _obtain_masks(self, resolution, return_boxes=False, return_existing=False, batch_size=None, device=None):
return_boxes = return_boxes or (return_existing and self.self_masks is None)
if return_boxes or self.cur_step < self.min_clustering_step:
masks = self._convert_boxes_to_masks(resolution, device=device).unsqueeze(0)
if batch_size is not None:
masks = masks.expand(batch_size, *masks.shape[1:])
else:
masks = self._obtain_self_masks(resolution, return_existing=return_existing)
if device is not None:
masks = masks.to(device=device)
background_mask = masks.sum(dim=1) == 0
return masks, background_mask
def _convert_boxes_to_masks(self, resolution, device=None): # s n
boxes = torch.zeros(len(self.boxes), resolution, resolution, dtype=bool, device=device)
for i, box in enumerate(self.boxes):
x0, x1 = box[0] * resolution, box[2] * resolution
y0, y1 = box[1] * resolution, box[3] * resolution
boxes[i, round(y0) : round(y1), round(x0) : round(x1)] = True
return boxes.flatten(start_dim=1)
def _obtain_self_masks(self, resolution, return_existing=False):
if (
(self.self_masks is None) or
(
(self.cur_step % self.delta_refine_mask_steps == 0) and
(self.cur_att_layer == 0) and
(not return_existing)
)
):
self.self_masks = self._fix_zero_masks(self._build_self_masks())
b, s, n = self.self_masks.shape
mask_resolution = int(n ** 0.5)
self_masks = self.self_masks.reshape(b, s, mask_resolution, mask_resolution).float()
self_masks = F.interpolate(self_masks, resolution, mode='nearest-exact')
return self_masks.flatten(start_dim=2).bool()
def _build_self_masks(self):
c, clusters = self._cluster_self_maps() # b n
cluster_masks = torch.stack([(clusters == cluster_index) for cluster_index in range(c)], dim=2) # b n c
cluster_area = cluster_masks.sum(dim=1, keepdim=True) # b 1 c
n = clusters.size(1)
resolution = int(n ** 0.5)
cross_masks = self._obtain_cross_masks(resolution) # b s n
cross_mask_area = cross_masks.sum(dim=2, keepdim=True) # b s 1
intersection = torch.bmm(cross_masks.float(), cluster_masks.float()) # b s c
min_area = torch.minimum(cross_mask_area, cluster_area) # b s c
score_per_cluster, subject_per_cluster = torch.max(intersection / min_area, dim=1) # b c
subjects = torch.gather(subject_per_cluster, 1, clusters) # b n
scores = torch.gather(score_per_cluster, 1, clusters) # b n
s = cross_masks.size(1)
self_masks = torch.stack([(subjects == subject_index) for subject_index in range(s)], dim=1) # b s n
scores = scores.unsqueeze(1).expand(-1 ,s, n) # b s n
self_masks[scores < self.self_mask_threshold] = False
self._save_maps(self_masks, 'self_masks')
return self_masks
def _cluster_self_maps(self): # b s n
self_maps = self._compute_maps(self.mean_self_map) # b n m
if self.pca_rank is not None:
dtype = self_maps.dtype
_, _, eigen_vectors = torch.pca_lowrank(self_maps.float(), self.pca_rank)
self_maps = torch.matmul(self_maps, eigen_vectors.to(dtype=dtype))
clustering_results = self.clustering(self_maps, centers=self.centers)
self.clustering.num_init = 1 # clustering is deterministic after the first time
self.centers = clustering_results.centers
clusters = clustering_results.labels
num_clusters = self.clustering.n_clusters
self._save_maps(clusters / num_clusters, f'clusters')
return num_clusters, clusters
def _obtain_cross_masks(self, resolution, scale=10):
maps = self._compute_maps(self.mean_cross_map, resolution=resolution) # b n k
maps = F.sigmoid(scale * (maps - self.cross_mask_threshold))
maps = self._normalize_maps(maps, reduce_min=True)
maps = maps.transpose(1, 2) # b k n
existing_masks, _ = self._obtain_masks(
resolution, return_existing=True, batch_size=maps.size(0), device=maps.device)
maps = maps * existing_masks.to(dtype=maps.dtype)
self._save_maps(maps, 'cross_masks')
return maps
def _fix_zero_masks(self, masks):
b, s, n = masks.shape
resolution = int(n ** 0.5)
boxes = self._convert_boxes_to_masks(resolution, device=masks.device) # s n
for i in range(b):
for j in range(s):
if masks[i, j].sum() == 0:
print('******Found a zero mask!******')
for k in range(s):
masks[i, k] = boxes[j] if (k == j) else masks[i, k].logical_and(~boxes[j])
return masks
def _compute_maps(self, maps, resolution=None): # b n k
if resolution is not None:
b, n, k = maps.shape
original_resolution = int(n ** 0.5)
maps = maps.transpose(1, 2).reshape(b, k, original_resolution, original_resolution)
maps = F.interpolate(maps, resolution, mode='bilinear', antialias=True)
maps = maps.reshape(b, k, -1).transpose(1, 2)
maps = self._normalize_maps(maps)
return maps
@classmethod
def _normalize_maps(cls, maps, reduce_min=False): # b n k
max_values = maps.max(dim=1, keepdim=True)[0]
min_values = maps.min(dim=1, keepdim=True)[0] if reduce_min else 0
numerator = maps - min_values
denominator = max_values - min_values + cls.EPSILON
return numerator / denominator
def _save_maps(self, maps, prefix):
if self.map_dir is None or self.cur_step % self.delta_debug_mask_steps != 0:
return
resolution = int(maps.size(-1) ** 0.5)
maps = maps.reshape(-1, 1, resolution, resolution).float()
maps = F.interpolate(maps, self.saved_resolution, mode='bilinear', antialias=True)
path = os.path.join(self.map_dir, f'map_{prefix}_{self.cur_step}_{self.cur_att_layer}.png')
torchvision.utils.save_image(maps, path)
def _display_attention_maps(self, attention_maps, is_cross, num_heads, prefix=None):
if (not self.debug) or (self.cur_step == 0) or (self.cur_step % self.delta_debug_attention_steps > 0) or (self.cur_att_layer not in self.debug_layers):
return
dir_name = self.map_dir
if prefix is not None:
splits = list(os.path.split(dir_name))
splits[-1] = '_'.join((prefix, splits[-1]))
dir_name = os.path.join(*splits)
resolution = int(attention_maps.size(-2) ** 0.5)
if is_cross:
attention_maps = einops.rearrange(attention_maps, 'b (r1 r2) k -> b k r1 r2', r1=resolution)
attention_maps = F.interpolate(attention_maps, self.saved_resolution, mode='bilinear', antialias=True)
attention_maps = einops.rearrange(attention_maps, 'b k r1 r2 -> b (r1 r2) k')
utils.display_attention_maps(
attention_maps,
is_cross,
num_heads,
self.model.tokenizer,
self.prompts,
dir_name,
self.cur_step,
self.cur_att_layer,
resolution,
)
def _debug_hook(self, q, k, v, sim, attn, is_cross, place_in_unet, num_heads, **kwargs):
pass
|