File size: 13,438 Bytes
327ce39 75868ed 327ce39 75868ed 327ce39 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 |
import streamlit as st
import os
import json
import requests
from google import genai
from google.genai import types
from dotenv import load_dotenv
load_dotenv()
# Set page configuration
st.set_page_config(
page_title="Flaix - Financial Assistant",
page_icon="π°",
layout="centered"
)
# Initialize Gemini client
api_key = st.secrets["GOOGLE_API_KEY"]
client = genai.Client(api_key=api_key)
# Indian Stock Market API base configuration
INDIAN_API_KEY = st.secrets["FINANCE_KEY"]
INDIAN_API_BASE_URL = "https://stock.indianapi.in"
# Define API endpoints and their parameters
API_ENDPOINTS = {
"get_stock_details": {
"endpoint": "/stock",
"required_params": ["stock_name"],
"param_mapping": {"stock_name": "name"},
"description": "Get details for a specific stock"
},
"get_trending_stocks": {
"endpoint": "/trending",
"required_params": [],
"param_mapping": {},
"description": "Get trending stocks in the market"
},
"get_market_news": {
"endpoint": "/news",
"required_params": [],
"param_mapping": {},
"description": "Get latest stock market news"
},
"get_mutual_funds": {
"endpoint": "/mutual_funds",
"required_params": [],
"param_mapping": {},
"description": "Get mutual funds data"
},
"get_ipo_data": {
"endpoint": "/ipo",
"required_params": [],
"param_mapping": {},
"description": "Get IPO data"
},
"get_bse_most_active": {
"endpoint": "/BSE_most_active",
"required_params": [],
"param_mapping": {},
"description": "Get BSE most active stocks"
},
"get_nse_most_active": {
"endpoint": "/NSE_most_active",
"required_params": [],
"param_mapping": {},
"description": "Get NSE most active stocks"
},
"get_historical_data": {
"endpoint": "/historical_data",
"required_params": ["stock_name"],
"optional_params": ["period"],
"default_values": {"period": "1m", "filter": "default"},
"param_mapping": {},
"description": "Get historical data for a stock"
}
}
# Unified API call function
def call_indian_api(endpoint, params=None):
"""
Generic function to call the Indian Stock Market API
Args:
endpoint: API endpoint suffix (e.g., '/stock', '/trending')
params: Optional parameters for the API call
Returns:
JSON response from the API
"""
url = f"{INDIAN_API_BASE_URL}{endpoint}"
headers = {"X-Api-Key": INDIAN_API_KEY}
try:
response = requests.get(url, headers=headers, params=params)
return response.json()
except Exception as e:
return {"error": str(e)}
# Function to call API by name
def call_api_by_name(api_name, **kwargs):
"""
Call an API by its name from the API_ENDPOINTS dictionary
Args:
api_name: Name of the API to call (key in API_ENDPOINTS)
**kwargs: Parameters to pass to the API
Returns:
JSON response from the API
"""
if api_name not in API_ENDPOINTS:
return {"error": f"Unknown API: {api_name}"}
api_info = API_ENDPOINTS[api_name]
endpoint = api_info["endpoint"]
# Check required parameters
for param in api_info.get("required_params", []):
if param not in kwargs:
return {"error": f"Missing required parameter: {param}"}
# Apply parameter mapping
mapped_params = {}
for param, value in kwargs.items():
mapped_name = api_info.get("param_mapping", {}).get(param, param)
mapped_params[mapped_name] = value
# Apply default values
for param, value in api_info.get("default_values", {}).items():
if param not in mapped_params:
mapped_params[param] = value
return call_indian_api(endpoint, mapped_params)
# Improved orchestrator function
def orchestrator(query):
"""
Determines if the query requires market data and which API to call
Returns: (needs_api, api_function, params)
"""
# Create a more precise prompt for the orchestrator
orchestrator_prompt = """
You are an orchestrator for a financial assistant specialized in Indian markets. Your job is to analyze user queries and determine if they need real-time market data.
IMPORTANT: Be very precise in your analysis. Only return TRUE for "needs_api" when the query EXPLICITLY asks for current market data, stock prices, or listings.
Examples where needs_api should be TRUE:
- "Show me the most active stocks on NSE today" β get_nse_most_active
- "What is the current price of Reliance?" β get_stock_details with stock_name="Reliance"
- "Tell me about trending stocks" β get_trending_stocks
- "What are the latest IPOs?" β get_ipo_data
Examples where needs_api should be FALSE:
- "What is compound interest?"
- "How should I start investing?"
- "What are the tax benefits of PPF?"
- "Explain mutual funds to me"
Available API functions:
- get_stock_details(stock_name): Get details for a specific stock
- get_trending_stocks(): Get trending stocks in the market
- get_market_news(): Get latest stock market news
- get_mutual_funds(): Get mutual funds data
- get_ipo_data(): Get IPO data
- get_bse_most_active(): Get BSE most active stocks
- get_nse_most_active(): Get NSE most active stocks
- get_historical_data(stock_name, period="1m"): Get historical data for a stock
User query: """ + query + """
Respond in JSON format with the following structure:
{
"needs_api": true/false,
"function": "function_name_if_needed",
"params": {
"param1": "value1",
"param2": "value2"
}
}
"""
# Create content for the orchestrator
contents = [
types.Content(
role="user",
parts=[
types.Part.from_text(text=orchestrator_prompt)
],
),
]
# Configure generation parameters
generate_content_config = types.GenerateContentConfig(
temperature=0.2,
top_p=0.95,
top_k=40,
max_output_tokens=500,
response_mime_type="text/plain",
)
# Generate content
response = client.models.generate_content(
model="gemini-1.5-flash",
contents=contents,
config=generate_content_config,
)
# Parse the response
try:
decision_text = response.text
# Extract JSON from the response (it might be wrapped in markdown code blocks)
if "```json" in decision_text:
json_str = decision_text.split("```json")[1].split("```")[0].strip()
elif "```" in decision_text:
json_str = decision_text.split("```")[1].strip()
else:
json_str = decision_text.strip()
decision = json.loads(json_str)
return decision
except Exception as e:
print(f"Error parsing orchestrator response: {e}")
return {"needs_api": False}
# Language setting
# Financial assistant system prompt
SYSTEM_PROMPT = f"""You are Flaix, a helpful and knowledgeable financial assistant designed specifically for Indian users. Your purpose is to improve financial literacy and provide guidance on investments in the Indian market.
Key responsibilities:
1. Explain financial concepts in simple, easy-to-understand language
2. Provide information about different investment options available in India (stocks, mutual funds, bonds, PPF, FDs, etc.)
3. Help users understand investment risks and returns
4. Explain tax implications of different investments in the Indian context
5. Guide users on how to start investing based on their goals and risk tolerance
6. Answer questions about market trends and financial news in India
"""
# Initialize session state for chat history
if "messages" not in st.session_state:
st.session_state.messages = [
{"role": "user", "content": SYSTEM_PROMPT},
{"role": "model", "content": "Hello! I am Flaix, your financial assistant. You can ask me about investments, financial planning, or any other financial topic."}
]
# App title and description
st.title("Flaix - Your Financial Assistant")
st.markdown("Ask any questions about investing, financial planning, or the Indian financial market.")
# Display chat messages
for message in st.session_state.messages:
if message["role"] == "user" and message["content"] != SYSTEM_PROMPT:
with st.chat_message("user"):
st.write(message["content"])
elif message["role"] == "model":
with st.chat_message("assistant"):
st.write(message["content"])
# Chat input
if prompt := st.chat_input("Ask me anything about finance or investing..."):
# Add user message to chat history
st.session_state.messages.append({"role": "user", "content": prompt})
# Display user message
with st.chat_message("user"):
st.write(prompt)
# Display assistant response
with st.chat_message("assistant"):
message_placeholder = st.empty()
full_response = ""
try:
# First, use the orchestrator to determine if we need to call an API
decision = orchestrator(prompt)
# If we need to call an API, do so and add the result to the context
api_context = ""
if decision.get("needs_api", False):
function_name = decision.get("function", "")
params = decision.get("params", {})
message_placeholder.write("Fetching real-time market data...")
if function_name in API_ENDPOINTS:
api_result = call_api_by_name(function_name, **params)
api_context = f"\nHere is the real-time market data from the Indian Stock Market API:\n{json.dumps(api_result, indent=2)}\n\nPlease use this data to provide an informative response to the user's query."
# Prepare the user query with API context if available
user_query = prompt
if api_context:
user_query = f"{prompt}\n\n[SYSTEM NOTE: {api_context}]"
# Prepare the system message
system_message = SYSTEM_PROMPT
if len(st.session_state.messages) > 2: # If we have conversation history
# Extract previous conversation for context
conversation_history = ""
for i in range(1, min(5, len(st.session_state.messages) - 1)): # Get up to 5 previous exchanges
if st.session_state.messages[i]["role"] == "user" and st.session_state.messages[i]["content"] != SYSTEM_PROMPT:
conversation_history += f"User: {st.session_state.messages[i]['content']}\n"
elif st.session_state.messages[i]["role"] == "model":
conversation_history += f"Assistant: {st.session_state.messages[i]['content']}\n"
system_message += f"\n\nPrevious conversation:\n{conversation_history}"
# Create content for the LLM
contents = [
types.Content(
role="user",
parts=[
types.Part.from_text(text=system_message)
],
),
types.Content(
role="model",
parts=[
types.Part.from_text(text="I understand my role as Flaix, a financial assistant for Indian users. I'll provide helpful information about investing and financial planning in simple language.")
],
),
types.Content(
role="user",
parts=[
types.Part.from_text(text=user_query)
],
),
]
# Configure generation parameters
generate_content_config = types.GenerateContentConfig(
temperature=0.7,
top_p=0.95,
top_k=40,
max_output_tokens=8192,
response_mime_type="text/plain",
)
# Stream the response
response_stream = client.models.generate_content_stream(
model="gemini-1.5-flash",
contents=contents,
config=generate_content_config,
)
# Process streaming response
for chunk in response_stream:
if hasattr(chunk, 'text'):
full_response += chunk.text
message_placeholder.write(full_response + "β")
# Final update without cursor
message_placeholder.write(full_response)
except Exception as e:
st.error(f"Error: {str(e)}")
full_response = "I'm sorry, I encountered an error. Please try again later."
message_placeholder.write(full_response)
# Add assistant response to chat history
st.session_state.messages.append({"role": "model", "content": full_response})
|