File size: 9,756 Bytes
6e251da
 
 
 
c900cba
 
 
6e251da
55cad48
 
 
 
 
6e251da
c900cba
 
 
 
 
 
 
 
b1326c8
79ab49c
c900cba
 
 
79ab49c
c900cba
 
 
 
 
 
 
55cad48
c900cba
55cad48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e251da
 
c900cba
79ab49c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e251da
55cad48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c900cba
 
55cad48
6e251da
c900cba
79ab49c
6e251da
c900cba
b1326c8
 
 
6e251da
9b66cdf
b1326c8
1803e28
b1326c8
 
1803e28
b1326c8
1803e28
b1326c8
55cad48
b1326c8
 
55cad48
79ab49c
b1326c8
 
79ab49c
9b66cdf
 
 
 
b1326c8
 
 
 
79ab49c
b1326c8
 
 
9b66cdf
79ab49c
9b66cdf
 
 
 
 
 
 
79ab49c
b1326c8
 
 
 
55cad48
 
79ab49c
9b66cdf
79ab49c
9b66cdf
 
55cad48
9b66cdf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55cad48
9b66cdf
 
 
 
 
 
 
 
 
 
 
 
 
 
55cad48
9b66cdf
b1326c8
 
79ab49c
b1326c8
 
 
79ab49c
b1326c8
 
 
79ab49c
b1326c8
 
 
79ab49c
9b66cdf
b1326c8
9b66cdf
55cad48
 
9b66cdf
55cad48
 
 
9b66cdf
79ab49c
 
 
 
 
b1326c8
9b66cdf
6e251da
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
import streamlit as st
import cv2
import numpy as np
import tempfile
from PIL import Image
import torch
from torchvision import transforms, models
import time
import plotly.graph_objects as go
from PIL import Image, ImageDraw
import base64
from io import BytesIO
import pandas as pd

# Set page config
st.set_page_config(
    page_title="Dog Language Understanding",
    page_icon="πŸ•",
    layout="wide"
)

class DogBehaviorAnalyzer:
    def __init__(self):
        # Initialize model (using pretrained ResNet for this example)
        self.model = models.resnet50(pretrained=True)
        self.model.eval()
        
        # Define image transformations
        self.transform = transforms.Compose([
            transforms.Resize((224, 224)),
            transforms.ToTensor(),
            transforms.Normalize(mean=[0.485, 0.456, 0.406],
                              std=[0.229, 0.224, 0.225])
        ])
        
        # Enhanced behavior mappings with emotions and tips
        self.behaviors = {
            'tail_wagging': {
                'emotion': 'Happy and excited',
                'description': 'Your dog is expressing joy and enthusiasm!',
                'tips': [
                    'This is a great time for positive reinforcement training',
                    'Consider engaging in play or exercise',
                    'Use this excitement for teaching new tricks'
                ]
            },
            'barking': {
                'emotion': 'Alert or communicative',
                'description': 'Your dog is trying to communicate or alert you.',
                'tips': [
                    'Check what triggered the barking',
                    'Use positive reinforcement for quiet behavior',
                    'Consider training "quiet" and "speak" commands'
                ]
            },
            'ears_perked': {
                'emotion': 'Alert and interested',
                'description': 'Your dog is focused and attentive.',
                'tips': [
                    'Great moment for training exercises',
                    'Consider mental stimulation activities',
                    'Use this attention for bonding exercises'
                ]
            },
            'lying_down': {
                'emotion': 'Relaxed and comfortable',
                'description': 'Your dog is calm and at ease.',
                'tips': [
                    'Perfect time for gentle petting',
                    'Maintain a peaceful environment',
                    'Consider quiet bonding activities'
                ]
            },
            'jumping': {
                'emotion': 'Excited and playful',
                'description': 'Your dog is energetic and seeking interaction!',
                'tips': [
                    'Channel energy into structured play',
                    'Practice "four paws on floor" training',
                    'Consider agility exercises'
                ]
            }
        }

    def analyze_frame(self, frame):
        # Convert frame to PIL Image
        image = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
        
        # Transform image
        input_tensor = self.transform(image)
        input_batch = input_tensor.unsqueeze(0)
        
        # Simulate behavior detection
        # In a real implementation, you'd use a properly trained model
        behaviors = []
        confidence_scores = np.random.random(len(self.behaviors))
        
        for behavior, score in zip(self.behaviors.keys(), confidence_scores):
            if score > 0.7:  # Threshold for detection
                behaviors.append(behavior)
        
        return behaviors

    def create_animation(self, behavior):
        """Create simple animations for behaviors"""
        # Create a simple animation frame
        img = Image.new('RGB', (200, 200), 'white')
        draw = ImageDraw.Draw(img)
        
        if behavior == 'tail_wagging':
            # Draw a simple tail wagging animation
            draw.arc([50, 50, 150, 150], 0, 180, fill='black', width=2)
        elif behavior == 'barking':
            # Draw speech-bubble like shapes
            draw.ellipse([50, 50, 150, 150], outline='black', width=2)
        
        # Convert to base64 for display
        buffered = BytesIO()
        img.save(buffered, format="PNG")
        return base64.b64encode(buffered.getvalue()).decode()

def main():
    st.title("πŸ• Dog Language Understanding")
    st.write("Upload a video of your dog to analyze their behavior and emotions!")

    analyzer = DogBehaviorAnalyzer()
    video_file = st.file_uploader("Upload Video", type=['mp4', 'avi', 'mov'])

    if video_file is not None:
        # Save uploaded file temporarily
        tfile = tempfile.NamedTemporaryFile(delete=False)
        tfile.write(video_file.read())

        # Video processing
        cap = cv2.VideoCapture(tfile.name)
        
        # Create columns for layout
        col1, col2 = st.columns(2)
        
        with col1:
            st.subheader("Video Preview")
            video_placeholder = st.empty()
        
        # Analysis results storage
        behavior_counts = {behavior: 0 for behavior in analyzer.behaviors.keys()}
        current_emotions = set()
        
        frame_count = 0
        total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
        
        # Progress bar
        progress_bar = st.progress(0)
        progress_text = st.empty()

        while cap.isOpened():
            ret, frame = cap.read()
            if not ret:
                break
                
            frame_count += 1
            progress = frame_count / total_frames
            progress_bar.progress(progress)
            progress_text.text(f"Analyzing video: {int(progress * 100)}%")
            
            # Update video preview periodically (every 5th frame)
            if frame_count % 5 == 0:
                video_placeholder.image(
                    cv2.cvtColor(frame, cv2.COLOR_BGR2RGB),
                    channels="RGB",
                    use_container_width=True
                )
            
            # Analyze frame
            detected_behaviors = analyzer.analyze_frame(frame)
            for behavior in detected_behaviors:
                behavior_counts[behavior] += 1
                current_emotions.add(behavior)
        
        cap.release()
        progress_text.empty()
        
        # Display final analysis
        st.subheader("Behavior Analysis Results")
        
        # Display detected behaviors and their interpretations
        for behavior, count in behavior_counts.items():
            if count > 0:
                with st.expander(f"{behavior.replace('_', ' ').title()} - Detected {count} times"):
                    behavior_info = analyzer.behaviors[behavior]
                    st.write(f"**Emotion:** {behavior_info['emotion']}")
                    st.write(f"**Description:** {behavior_info['description']}")
                    
                    # Display behavior animation
                    animation_data = analyzer.create_animation(behavior)
                    st.image(
                        f"data:image/png;base64,{animation_data}",
                        width=100,
                        caption=f"{behavior.replace('_', ' ').title()} Visual"
                    )
                    
                    # Display training tips
                    st.subheader("Training Tips:")
                    for tip in behavior_info['tips']:
                        st.info(tip)

        # Create emotion timeline
        if current_emotions:
            st.subheader("Emotional Journey")
            emotions_df = pd.DataFrame(list(current_emotions), columns=['Emotion'])
            fig = go.Figure(data=[go.Scatter(
                x=emotions_df.index,
                y=emotions_df['Emotion'],
                mode='lines+markers'
            )])
            fig.update_layout(
                xaxis_title='Time',
                yaxis_title='Emotion',
                height=400
            )
            st.plotly_chart(fig, use_container_width=True)
        
        # Summary metrics
        st.subheader("Analysis Summary")
        col1, col2, col3 = st.columns(3)
        
        with col1:
            most_common = max(behavior_counts.items(), key=lambda x: x[1])[0]
            st.metric("Most Common Behavior", most_common.replace('_', ' ').title())
            
        with col2:
            total_behaviors = sum(behavior_counts.values())
            st.metric("Total Behaviors Detected", total_behaviors)
            
        with col3:
            behavior_variety = len([b for b in behavior_counts.values() if b > 0])
            st.metric("Behavior Variety", f"{behavior_variety} types")
        
        # Final recommendations
        if total_behaviors > 0:
            st.subheader("Personalized Recommendations")
            dominant_behavior = max(behavior_counts.items(), key=lambda x: x[1])[0]
            st.write(f"""
            Based on the analysis, here are personalized recommendations for your dog's dominant behavior ({dominant_behavior.replace('_', ' ')}):
            
            {' '.join(analyzer.behaviors[dominant_behavior]['tips'])}
            
            **General recommendations:**
            - Maintain regular exercise routines
            - Provide mental stimulation through toys and training
            - Continue positive reinforcement training
            - Monitor your dog's body language for better communication
            """)
        else:
            st.warning("No behaviors detected. Try uploading a different video with clearer dog movements.")

if __name__ == "__main__":
    main()