File size: 9,986 Bytes
1dc26c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
import torch, random
import torchvision.transforms.functional as F
import torchvision.transforms as tf
import numpy as np
from PIL import Image
from typing import Tuple, List, Callable


class Compose:

    def __init__(self,
                 transforms: List[Callable], 
                 student_augs: bool = False):
        self.transforms = transforms
        self.student_augs = student_augs

    def __call__(self,
                 img: Image.Image,
                 gt: Image.Image, 
                 pseudo = None) -> Tuple[torch.Tensor, torch.Tensor]:

        for transform in self.transforms:
            if pseudo is None:
                img, gt = transform(img, gt)
            else:
                img, gt, pseudo = transform(img, gt, pseudo)
                
        if self.student_augs:
            aimg = img.clone()
            aimg, _ = RandGaussianBlur()(aimg, gt)
            if 0.5 > random.random():
                aimg, _ = ColorJitter()(aimg, gt)
            else:
                aimg, _ = MaskGrayscale()(aimg, gt)
                

        if pseudo is None and not self.student_augs: 
            return img, gt
        elif pseudo is None and self.student_augs:
            return img, gt, aimg
        elif pseudo is not None and not self.student_augs:
            return img, gt, pseudo
        else:
            return img, gt, aimg, pseudo

class ToTensor:

    def __call__(self,
                 img: Image.Image,
                 gt: Image.Image,
                 pseudo = None) -> Tuple[torch.Tensor, torch.Tensor]:

        img = F.to_tensor(np.array(img))
        gt = torch.from_numpy(np.array(gt)).unsqueeze(0)
        if pseudo is not None:
            pseudo = torch.from_numpy(np.array(pseudo)).unsqueeze(0)

        if pseudo is None: 
            return img, gt
        else:
            return img, gt, pseudo

class Resize:

    def __init__(self,
                 resize: Tuple[int]):

        self.img_resize = tf.Resize(size=resize,
                                    interpolation=tf.InterpolationMode.BILINEAR) 
        self.gt_resize = tf.Resize(size=resize,
                                   interpolation=tf.InterpolationMode.NEAREST) 

    def __call__(self,
                 img: Image.Image,
                 gt: Image.Image,
                 pseudo = None) -> Tuple[Image.Image, Image.Image]:

        img = self.img_resize(img)
        gt = self.gt_resize(gt)

        if pseudo is None: 
            return img, gt
        else:
            return img, gt, self.gt_resize(pseudo)

class ImgResize:

    def __init__(self,
                 resize: Tuple[int, int]):
        self.resize = resize
        self.num_pixels = self.resize[0]*self.resize[1]

    def __call__(self,
                 img: torch.Tensor,
                 gt: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
        if torch.prod(torch.tensor(img.shape[-2:])) > self.num_pixels:
            img = torch.nn.functional.interpolate(img.unsqueeze(0), size=self.resize, mode='bilinear').squeeze(0)
        return img, gt

class ImgResizePIL:

    def __init__(self,
                 resize: Tuple[int]):
        self.resize = resize
        self.num_pixels = self.resize[0]*self.resize[1]

    def __call__(self,
                 img: Image) -> Image:
        if img.height*img.width > self.num_pixels:
            img = img.resize((self.resize[1], self.resize[0]), tf.InterpolationMode.BILINEAR)
        return img

class Normalize:

    def __init__(self,
                 mean: List[float] = [0.485, 0.456, 0.406],
                 std: List[float] = [0.229, 0.224, 0.225]):

        self.norm = tf.Normalize(mean=mean,
                                 std=std)

    def __call__(self,
                 img: torch.Tensor,
                 gt: torch.Tensor,
                 pseudo = None) -> Tuple[torch.Tensor, torch.Tensor]:

        img = self.norm(img)

        if pseudo is None: 
            return img, gt
        else:
            return img, gt, pseudo
    
class UnNormalize(object):
    def __init__(self,
                 mean: List[float] = [0.485, 0.456, 0.406],
                 std: List[float] = [0.229, 0.224, 0.225]):
        self.mean = mean
        self.std = std

    def __call__(self, image):
        image2 = torch.clone(image)
        for t, m, s in zip(image2, self.mean, self.std):
            t.mul_(s).add_(m)
        return image2



class RandomHFlip:

    def __init__(self,
                 percentage: float = 0.5):

        self.percentage = percentage

    def __call__(self,
                 img: Image.Image,
                 gt: Image.Image,
                 pseudo = None) -> Tuple[Image.Image, Image.Image]:

        if random.random() < self.percentage:
            img = F.hflip(img)
            gt = F.hflip(gt)
            if pseudo is not None:
                pseudo = F.hflip(pseudo)

        if pseudo is None: 
            return img, gt
        else:
            return img, gt, pseudo


class RandomResizedCrop:

    def __init__(self,
                 crop_size: List[int],
                 crop_scale: List[float],
                 crop_ratio: List[float]):
        print('RandomResizedCrop ratio modified!!!')
        self.crop_scale = tuple(crop_scale)
        self.crop_ratio = tuple(crop_ratio)
        self.crop = tf.RandomResizedCrop(size=tuple(crop_size),
                                         scale=self.crop_scale,
                                         ratio=self.crop_ratio,)

    def __call__(self,
                 img: Image.Image,
                 gt: Image.Image,
                 pseudo = None) -> Tuple[Image.Image, Image.Image]:

        i, j, h, w = self.crop.get_params(img=img,
                                          scale=self.crop.scale,
                                          ratio=self.crop.ratio)
        img = F.resized_crop(img, i, j, h, w, self.crop.size, tf.InterpolationMode.BILINEAR) 
        gt = F.resized_crop(gt, i, j, h, w, self.crop.size, tf.InterpolationMode.NEAREST) 
        if pseudo is not None:
            pseudo = F.resized_crop(pseudo, i, j, h, w, self.crop.size, tf.InterpolationMode.NEAREST)

        if pseudo is None: 
            return img, gt
        else:
            return img, gt, pseudo

class CenterCrop:

    def __init__(self,
                 crop_size: int):

        self.crop = tf.CenterCrop(size=crop_size)

    def __call__(self,
                 img: Image.Image,
                 gt: Image.Image,
                 pseudo = None) -> Tuple[Image.Image, Image.Image]:

        img = self.crop(img)
        gt = self.crop(gt)

        if pseudo is None: 
            return img, gt
        else:
            return img, gt, self.crop(pseudo)
    
class PyramidCenterCrop:

    def __init__(self, 
                 crop_size: List[int],
                 scales: List[float]):

        self.crop_size = crop_size
        self.scales = scales
        self.crop = tf.CenterCrop(size=crop_size)


    def __call__(self,
                 img: Image.Image,
                 gt: Image.Image) -> Tuple[Image.Image, Image.Image]:
        
        imgs = []
        gts = []
        for s in self.scales:
            new_size = (int(self.crop_size*1/s), int(self.crop_size*1/s*(img.shape[2]/img.shape[1])))
            img = tf.Resize(size=new_size, interpolation=tf.InterpolationMode.BILINEAR)(img)
            gt = tf.Resize(size=new_size, interpolation=tf.InterpolationMode.NEAREST)(gt)
            imgs.append(self.crop(img))
            gts.append(self.crop(gt))

        return torch.stack(imgs), torch.stack(gts)






class IdsToTrainIds:

    def __init__(self,
                 source: str):

        self.source = source
        self.first_nonvoid = 7


    def __call__(self,
                 img: torch.Tensor,
                 gt: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:

        if self.source == 'cityscapes':
            gt = gt.to(dtype=torch.int64) - self.first_nonvoid
            gt[gt>26] = 255
            gt[gt<0] = 255
        elif self.source == 'cocostuff':
            gt = gt.to(dtype=torch.int64)
        elif self.source == 'potsdam':
            gt = gt.to(dtype=torch.int64)
        return img, gt


class ColorJitter:
    def __init__(self, percentage: float = 0.3, brightness: float = 0.1,
                 contrast: float = 0.1, saturation: float = 0.1, hue: float = 0.1):

        self.percentage = percentage
        self.jitter = tf.ColorJitter(brightness=brightness,
                                     contrast=contrast,
                                     saturation=saturation,
                                     hue=hue)

    def __call__(self,
                 img: Image.Image,
                 gt: Image.Image,
                 pseudo = None) -> Tuple[Image.Image, Image.Image]:
        if random.random() < self.percentage:
            img = self.jitter(img)
        
        if pseudo is None: 
            return img, gt
        else:
            return img, gt, pseudo

class MaskGrayscale:

    def __init__(self, percentage: float = 0.1):
        self.percentage = percentage

    def __call__(self,
                 img: Image.Image,
                 gt: Image.Image,
                 pseudo = None) -> Tuple[Image.Image, Image.Image]:
        if self.percentage > random.random():
            img = tf.Grayscale(num_output_channels=3)(img) 
        if pseudo is None: 
            return img, gt
        else:
            return img, gt, pseudo

class RandGaussianBlur:

    def __init__(self, radius: List[float] = [.1, 2.]):
        self.radius = radius

    def __call__(self,
                 img: Image.Image,
                 gt: Image.Image,
                 pseudo = None) -> Tuple[Image.Image, Image.Image]:

        radius = random.uniform(self.radius[0], self.radius[1])
        img = tf.GaussianBlur(kernel_size=21, sigma=radius)(img)

        if pseudo is None: 
            return img, gt
        else:
            return img, gt, pseudo