File size: 9,618 Bytes
ef366f8
 
 
 
 
 
e1419c7
 
 
 
 
 
 
ef366f8
 
040958c
2ca7bf0
 
 
ef366f8
 
 
 
e1419c7
 
 
 
cb5d912
 
040958c
e1419c7
2ca7bf0
e1419c7
 
ef366f8
 
 
e1419c7
 
cb5d912
e1419c7
 
 
 
 
 
 
ef366f8
 
e1419c7
ef366f8
 
 
 
 
 
 
 
 
e1419c7
 
ef366f8
e1419c7
ef366f8
 
 
 
e1419c7
ef366f8
 
 
cb5d912
 
 
2f20661
cb5d912
 
 
 
 
ef366f8
94809e9
ef366f8
94809e9
ef366f8
 
 
040958c
a857304
e1419c7
cb5d912
 
ef366f8
 
 
 
 
 
a857304
 
ef366f8
 
 
511ba7f
ef366f8
 
 
e1419c7
 
ef366f8
 
 
 
 
 
 
 
e1419c7
cb5d912
 
 
 
 
 
 
 
e1419c7
cb5d912
 
 
 
 
 
35539cb
e952e62
cb5d912
 
 
 
 
 
e1419c7
 
 
cb5d912
 
 
 
35539cb
e1419c7
 
cb5d912
 
 
 
 
 
 
 
 
e1419c7
 
ef366f8
 
 
 
 
 
 
 
 
 
 
 
 
 
e1419c7
 
 
 
ef366f8
e1419c7
ef366f8
 
 
 
 
cb5d912
ef366f8
cb5d912
e1419c7
040958c
ef366f8
 
e86f2ba
ef366f8
 
 
 
 
 
e1419c7
ef366f8
 
 
 
cb5d912
ef366f8
 
 
 
cb5d912
 
 
 
 
 
 
 
ef366f8
 
 
e1419c7
ef366f8
 
 
cb5d912
ef366f8
 
 
 
e1419c7
ef366f8
 
 
cb5d912
ef366f8
 
 
 
e1419c7
ef366f8
 
 
cb5d912
ef366f8
 
 
 
e952e62
ef366f8
 
 
35539cb
ef366f8
e952e62
e1419c7
 
 
cb5d912
 
 
 
 
 
 
 
e1419c7
 
cb5d912
 
 
 
 
 
 
 
 
e1419c7
ef366f8
 
 
 
 
 
cb5d912
ef366f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb5d912
ef366f8
 
 
 
 
 
 
 
 
 
 
 
 
 
e4cda74
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
import os

import gradio as gr

from text_generation import Client, InferenceAPIClient

openchat_preprompt = (
    "\n<human>: Hi!\n<bot>: My name is Bot, model version is 0.15, part of an open-source kit for "
    "fine-tuning new bots! I was created by Together, LAION, and Ontocord.ai and the open-source "
    "community. I am not human, not evil and not alive, and thus have no thoughts and feelings, "
    "but I am programmed to be helpful, polite, honest, and friendly.\n"
)


def get_client(model: str):
    if model == "Rallio67/joi2_20B_instruct_alpha":
        return Client(os.getenv("JOI_API_URL"))
    if model == "togethercomputer/GPT-NeoXT-Chat-Base-20B":
        return Client(os.getenv("OPENCHAT_API_URL"))
    return InferenceAPIClient(model, token=os.getenv("HF_TOKEN", None))


def get_usernames(model: str):
    """
    Returns:
        (str, str, str, str): pre-prompt, username, bot name, separator
    """
    if model == "OpenAssistant/oasst-sft-1-pythia-12b":
        return "", "<|prompter|", "<|assistant|>", "<|endoftext|>"
    if model == "Rallio67/joi2_20B_instruct_alpha":
        return "", "User: ", "Joi: ", "\n\n"
    if model == "togethercomputer/GPT-NeoXT-Chat-Base-20B":
        return openchat_preprompt, "<human>: ", "<bot>: ", "\n"
    return "", "User: ", "Assistant: ", "\n"


def predict(
    model: str,
    inputs: str,
    typical_p: float,
    top_p: float,
    temperature: float,
    top_k: int,
    repetition_penalty: float,
    watermark: bool,
    chatbot,
    history,
):
    client = get_client(model)
    preprompt, user_name, assistant_name, sep = get_usernames(model)

    history.append(inputs)

    past = []
    for data in chatbot:
        user_data, model_data = data

        if not user_data.startswith(user_name):
            user_data = user_name + user_data
        if not model_data.startswith(sep + assistant_name):
            model_data = sep + assistant_name + model_data

        past.append(user_data + model_data.rstrip() + sep)

    if not inputs.startswith(user_name):
        inputs = user_name + inputs

    total_inputs = preprompt + "".join(past) + inputs + sep + assistant_name.rstrip()

    partial_words = ""

    if model == "OpenAssistant/oasst-sft-1-pythia-12b":
        iterator = client.generate_stream(
            total_inputs,
            typical_p=typical_p,
            watermark=watermark,
            max_new_tokens=500,
        )
    else:
        iterator = client.generate_stream(
            total_inputs,
            top_p=top_p if top_p < 1.0 else None,
            top_k=top_k,
            truncate=1000,
            repetition_penalty=repetition_penalty,
            watermark=watermark,
            temperature=temperature,
            max_new_tokens=500,
            stop_sequences=[user_name.rstrip(), assistant_name.rstrip()],
        )

    for i, response in enumerate(iterator):
        if response.token.special:
            continue

        partial_words = partial_words + response.token.text
        if partial_words.endswith(user_name.rstrip()):
            partial_words = partial_words.rstrip(user_name.rstrip())
        if partial_words.endswith(assistant_name.rstrip()):
            partial_words = partial_words.rstrip(assistant_name.rstrip())

        if i == 0:
            history.append(" " + partial_words)
        elif response.token.text not in user_name:
            history[-1] = partial_words

        chat = [
            (history[i].strip(), history[i + 1].strip())
            for i in range(0, len(history) - 1, 2)
        ]
        yield chat, history


def reset_textbox():
    return gr.update(value="")


def radio_on_change(
    value: str,
    disclaimer,
    typical_p,
    top_p,
    top_k,
    temperature,
    repetition_penalty,
    watermark,
):
    if value == "OpenAssistant/oasst-sft-1-pythia-12b":
        typical_p = typical_p.update(value=0.2, visible=True)
        top_p = top_p.update(visible=False)
        top_k = top_k.update(visible=False)
        temperature = temperature.update(visible=False)
        disclaimer = disclaimer.update(visible=False)
        repetition_penalty = repetition_penalty.update(visible=False)
        watermark = watermark.update(False)
    elif value == "togethercomputer/GPT-NeoXT-Chat-Base-20B":
        typical_p = typical_p.update(visible=False)
        top_p = top_p.update(value=0.25, visible=True)
        top_k = top_k.update(value=50, visible=True)
        temperature = temperature.update(value=0.6, visible=True)
        repetition_penalty = repetition_penalty.update(value=1.01, visible=True)
        watermark = watermark.update(False)
        disclaimer = disclaimer.update(visible=True)
    else:
        typical_p = typical_p.update(visible=False)
        top_p = top_p.update(value=0.95, visible=True)
        top_k = top_k.update(value=4, visible=True)
        temperature = temperature.update(value=0.5, visible=True)
        repetition_penalty = repetition_penalty.update(value=1.03, visible=True)
        watermark = watermark.update(True)
        disclaimer = disclaimer.update(visible=False)
    return (
        disclaimer,
        typical_p,
        top_p,
        top_k,
        temperature,
        repetition_penalty,
        watermark,
    )


title = """<h1 align="center">🔥Large Language Model API 🚀Streaming🚀</h1>"""
description = """Language models can be conditioned to act like dialogue agents through a conversational prompt that typically takes the form:

```
User: <utterance>
Assistant: <utterance>
User: <utterance>
Assistant: <utterance>
...
```

In this app, you can explore the outputs of multiple LLMs when prompted in this way.
"""

openchat_disclaimer = """
<div align="center">Checkout the official <a href=https://huggingface.co/spaces/togethercomputer/OpenChatKit>OpenChatKit feedback app</a> for the full experience.</div>
"""

with gr.Blocks(
    css="""#col_container {margin-left: auto; margin-right: auto;}
                #chatbot {height: 520px; overflow: auto;}"""
) as demo:
    gr.HTML(title)
    with gr.Column(elem_id="col_container"):
        model = gr.Radio(
            value="OpenAssistant/oasst-sft-1-pythia-12b",
            choices=[
                "OpenAssistant/oasst-sft-1-pythia-12b",
                "togethercomputer/GPT-NeoXT-Chat-Base-20B",
                "Rallio67/joi2_20B_instruct_alpha",
                "google/flan-t5-xxl",
                "google/flan-ul2",
                "bigscience/bloom",
                "bigscience/bloomz",
                "EleutherAI/gpt-neox-20b",
            ],
            label="Model",
            interactive=True,
        )

        chatbot = gr.Chatbot(elem_id="chatbot")
        inputs = gr.Textbox(
            placeholder="Hi there!", label="Type an input and press Enter"
        )
        disclaimer = gr.Markdown(openchat_disclaimer, visible=False)
        state = gr.State([])
        b1 = gr.Button()

        with gr.Accordion("Parameters", open=False):
            typical_p = gr.Slider(
                minimum=-0,
                maximum=1.0,
                value=0.2,
                step=0.05,
                interactive=True,
                label="Typical P mass",
            )
            top_p = gr.Slider(
                minimum=-0,
                maximum=1.0,
                value=0.25,
                step=0.05,
                interactive=True,
                label="Top-p (nucleus sampling)",
                visible=False,
            )
            temperature = gr.Slider(
                minimum=-0,
                maximum=5.0,
                value=0.6,
                step=0.1,
                interactive=True,
                label="Temperature",
                visible=False,
            )
            top_k = gr.Slider(
                minimum=1,
                maximum=50,
                value=50,
                step=1,
                interactive=True,
                label="Top-k",
                visible=False,
            )
            repetition_penalty = gr.Slider(
                minimum=0.1,
                maximum=3.0,
                value=1.03,
                step=0.01,
                interactive=True,
                label="Repetition Penalty",
                visible=False,
            )
            watermark = gr.Checkbox(value=False, label="Text watermarking")

    model.change(
        lambda value: radio_on_change(
            value,
            disclaimer,
            typical_p,
            top_p,
            top_k,
            temperature,
            repetition_penalty,
            watermark,
        ),
        inputs=model,
        outputs=[
            disclaimer,
            typical_p,
            top_p,
            top_k,
            temperature,
            repetition_penalty,
            watermark,
        ],
    )

    inputs.submit(
        predict,
        [
            model,
            inputs,
            typical_p,
            top_p,
            temperature,
            top_k,
            repetition_penalty,
            watermark,
            chatbot,
            state,
        ],
        [chatbot, state],
    )
    b1.click(
        predict,
        [
            model,
            inputs,
            typical_p,
            top_p,
            temperature,
            top_k,
            repetition_penalty,
            watermark,
            chatbot,
            state,
        ],
        [chatbot, state],
    )
    b1.click(reset_textbox, [], [inputs])
    inputs.submit(reset_textbox, [], [inputs])

    gr.Markdown(description)
    demo.queue(concurrency_count=16).launch(debug=True)