Spaces:
Running
on
Zero
Running
on
Zero
File size: 15,987 Bytes
474d064 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 |
import os
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
import sys
sys.path.insert(0, './diffusers/src')
import cv2
import numpy as np
import PIL
import torch
from controlnet_aux import ZoeDetector
from diffusers import DPMSolverMultistepScheduler
from diffusers.image_processor import IPAdapterMaskProcessor
from diffusers.models import ControlNetModel
from huggingface_hub import snapshot_download
from insightface.app import FaceAnalysis
from pipeline import OmniZeroPipeline
from transformers import CLIPVisionModelWithProjection
from utils import align_images, draw_kps, load_and_resize_image
import random
class OmniZeroSingle():
def __init__(self,
base_model="stabilityai/stable-diffusion-xl-base-1.0",
device="cuda",
):
snapshot_download("okaris/antelopev2", local_dir="./models/antelopev2")
self.face_analysis = FaceAnalysis(name='antelopev2', root='./', providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
self.face_analysis.prepare(ctx_id=0, det_size=(640, 640))
dtype = torch.float16
ip_adapter_plus_image_encoder = CLIPVisionModelWithProjection.from_pretrained(
"h94/IP-Adapter",
subfolder="models/image_encoder",
torch_dtype=dtype,
).to(device)
zoedepthnet_path = "okaris/zoe-depth-controlnet-xl"
zoedepthnet = ControlNetModel.from_pretrained(zoedepthnet_path,torch_dtype=dtype).to(device)
identitiynet_path = "okaris/face-controlnet-xl"
identitynet = ControlNetModel.from_pretrained(identitiynet_path, torch_dtype=dtype).to(device)
self.zoe_depth_detector = ZoeDetector.from_pretrained("lllyasviel/Annotators").to(device)
self.pipeline = OmniZeroPipeline.from_pretrained(
base_model,
controlnet=[identitynet, zoedepthnet],
torch_dtype=dtype,
image_encoder=ip_adapter_plus_image_encoder,
).to(device)
config = self.pipeline.scheduler.config
config["timestep_spacing"] = "trailing"
self.pipeline.scheduler = DPMSolverMultistepScheduler.from_config(config, use_karras_sigmas=True, algorithm_type="sde-dpmsolver++", final_sigmas_type="zero")
self.pipeline.load_ip_adapter(["okaris/ip-adapter-instantid", "h94/IP-Adapter", "h94/IP-Adapter"], subfolder=[None, "sdxl_models", "sdxl_models"], weight_name=["ip-adapter-instantid.bin", "ip-adapter-plus_sdxl_vit-h.safetensors", "ip-adapter-plus_sdxl_vit-h.safetensors"])
def get_largest_face_embedding_and_kps(self, image, target_image=None):
face_info = self.face_analysis.get(cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR))
if len(face_info) == 0:
return None, None
largest_face = sorted(face_info, key=lambda x: x['bbox'][2] * x['bbox'][3], reverse=True)[0]
face_embedding = torch.tensor(largest_face['embedding']).to("cuda")
if target_image is None:
target_image = image
zeros = np.zeros((target_image.size[1], target_image.size[0], 3), dtype=np.uint8)
face_kps_image = draw_kps(zeros, largest_face['kps'])
return face_embedding, face_kps_image
def generate(self,
seed=42,
prompt="A person",
negative_prompt="blurry, out of focus",
guidance_scale=3.0,
number_of_images=1,
number_of_steps=10,
base_image=None,
base_image_strength=0.15,
composition_image=None,
composition_image_strength=1.0,
style_image=None,
style_image_strength=1.0,
identity_image=None,
identity_image_strength=1.0,
depth_image=None,
depth_image_strength=0.5,
):
resolution = 1024
if base_image is not None:
base_image = load_and_resize_image(base_image, resolution, resolution)
else:
if composition_image is not None:
base_image = load_and_resize_image(composition_image, resolution, resolution)
else:
raise ValueError("You must provide a base image or a composition image")
if depth_image is None:
depth_image = self.zoe_depth_detector(base_image, detect_resolution=resolution, image_resolution=resolution)
else:
depth_image = load_and_resize_image(depth_image, resolution, resolution)
base_image, depth_image = align_images(base_image, depth_image)
if composition_image is not None:
composition_image = load_and_resize_image(composition_image, resolution, resolution)
else:
composition_image = base_image
if style_image is not None:
style_image = load_and_resize_image(style_image, resolution, resolution)
else:
raise ValueError("You must provide a style image")
if identity_image is not None:
identity_image = load_and_resize_image(identity_image, resolution, resolution)
else:
raise ValueError("You must provide an identity image")
face_embedding_identity_image, target_kps = self.get_largest_face_embedding_and_kps(identity_image, base_image)
if face_embedding_identity_image is None:
raise ValueError("No face found in the identity image, the image might be cropped too tightly or the face is too small")
face_embedding_base_image, face_kps_base_image = self.get_largest_face_embedding_and_kps(base_image)
if face_embedding_base_image is not None:
target_kps = face_kps_base_image
self.pipeline.set_ip_adapter_scale([identity_image_strength,
{
"down": { "block_2": [0.0, 0.0] },
"up": { "block_0": [0.0, style_image_strength, 0.0] }
},
{
"down": { "block_2": [0.0, composition_image_strength] },
"up": { "block_0": [0.0, 0.0, 0.0] }
}
])
generator = torch.Generator(device="cpu").manual_seed(seed)
images = self.pipeline(
prompt=prompt,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
ip_adapter_image=[face_embedding_identity_image, style_image, composition_image],
image=base_image,
control_image=[target_kps, depth_image],
controlnet_conditioning_scale=[identity_image_strength, depth_image_strength],
identity_control_indices=[(0,0)],
num_inference_steps=number_of_steps,
num_images_per_prompt=number_of_images,
strength=(1-base_image_strength),
generator=generator,
seed=seed,
).images
return images
class OmniZeroCouple():
def __init__(self,
base_model="stabilityai/stable-diffusion-xl-base-1.0",
device="cuda",
):
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
self.patch_onnx_runtime()
snapshot_download("okaris/antelopev2", local_dir="./models/antelopev2")
self.face_analysis = FaceAnalysis(name='antelopev2', root='./', providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
self.face_analysis.prepare(ctx_id=0, det_size=(640, 640))
self.dtype = dtype = torch.float16
ip_adapter_plus_image_encoder = CLIPVisionModelWithProjection.from_pretrained(
"h94/IP-Adapter",
subfolder="models/image_encoder",
torch_dtype=dtype,
).to(device)
zoedepthnet_path = "okaris/zoe-depth-controlnet-xl"
zoedepthnet = ControlNetModel.from_pretrained(zoedepthnet_path,torch_dtype=dtype).to(device)
identitiynet_path = "okaris/face-controlnet-xl"
identitynet = ControlNetModel.from_pretrained(identitiynet_path, torch_dtype=dtype).to(device)
self.zoe_depth_detector = ZoeDetector.from_pretrained("lllyasviel/Annotators").to(device)
self.ip_adapter_mask_processor = IPAdapterMaskProcessor()
self.pipeline = OmniZeroPipeline.from_pretrained(
base_model,
controlnet=[identitynet, identitynet, zoedepthnet],
torch_dtype=dtype,
image_encoder=ip_adapter_plus_image_encoder,
).to(device)
config = self.pipeline.scheduler.config
config["timestep_spacing"] = "trailing"
self.pipeline.scheduler = DPMSolverMultistepScheduler.from_config(config, use_karras_sigmas=True, algorithm_type="sde-dpmsolver++", final_sigmas_type="zero")
self.pipeline.load_ip_adapter(["okaris/ip-adapter-instantid", "okaris/ip-adapter-instantid", "h94/IP-Adapter"], subfolder=[None, None, "sdxl_models"], weight_name=["ip-adapter-instantid.bin", "ip-adapter-instantid.bin", "ip-adapter-plus_sdxl_vit-h.safetensors"])
def generate(self,
seed=42,
prompt="A person",
negative_prompt="blurry, out of focus",
guidance_scale=3.0,
number_of_images=1,
number_of_steps=10,
base_image=None,
base_image_strength=0.2,
style_image=None,
style_image_strength=1.0,
identity_image_1=None,
identity_image_strength_1=1.0,
identity_image_2=None,
identity_image_strength_2=1.0,
depth_image=None,
depth_image_strength=0.5,
mask_guidance_start=0.0,
mask_guidance_end=1.0,
):
if seed == -1:
seed = random.randint(0, 1000000)
resolution = 1024
if base_image is not None:
base_image = load_and_resize_image(base_image, resolution, resolution)
if depth_image is None:
depth_image = self.zoe_depth_detector(base_image, detect_resolution=resolution, image_resolution=resolution)
else:
depth_image = load_and_resize_image(depth_image, resolution, resolution)
base_image, depth_image = align_images(base_image, depth_image)
if style_image is not None:
style_image = load_and_resize_image(style_image, resolution, resolution)
else:
raise ValueError("You must provide a style image")
if identity_image_1 is not None:
identity_image_1 = load_and_resize_image(identity_image_1, resolution, resolution)
else:
raise ValueError("You must provide an identity image")
if identity_image_2 is not None:
identity_image_2 = load_and_resize_image(identity_image_2, resolution, resolution)
else:
raise ValueError("You must provide an identity image 2")
height, width = base_image.size
face_info_1 = self.face_analysis.get(cv2.cvtColor(np.array(identity_image_1), cv2.COLOR_RGB2BGR))
for i, face in enumerate(face_info_1):
print(f"Face 1 -{i}: Age: {face['age']}, Gender: {face['gender']}")
face_info_1 = sorted(face_info_1, key=lambda x:(x['bbox'][2]-x['bbox'][0])*x['bbox'][3]-x['bbox'][1])[-1] # only use the maximum face
face_emb_1 = torch.tensor(face_info_1['embedding']).to("cuda", dtype=self.dtype)
face_info_2 = self.face_analysis.get(cv2.cvtColor(np.array(identity_image_2), cv2.COLOR_RGB2BGR))
for i, face in enumerate(face_info_2):
print(f"Face 2 -{i}: Age: {face['age']}, Gender: {face['gender']}")
face_info_2 = sorted(face_info_2, key=lambda x:(x['bbox'][2]-x['bbox'][0])*x['bbox'][3]-x['bbox'][1])[-1] # only use the maximum face
face_emb_2 = torch.tensor(face_info_2['embedding']).to("cuda", dtype=self.dtype)
zero = np.zeros((width, height, 3), dtype=np.uint8)
# face_kps_identity_image_1 = self.draw_kps(zero, face_info_1['kps'])
# face_kps_identity_image_2 = self.draw_kps(zero, face_info_2['kps'])
face_info_img2img = self.face_analysis.get(cv2.cvtColor(np.array(base_image), cv2.COLOR_RGB2BGR))
faces_info_img2img = sorted(face_info_img2img, key=lambda x:(x['bbox'][2]-x['bbox'][0])*x['bbox'][3]-x['bbox'][1])
face_info_a = faces_info_img2img[-1]
face_info_b = faces_info_img2img[-2]
# face_emb_a = torch.tensor(face_info_a['embedding']).to("cuda", dtype=self.dtype)
# face_emb_b = torch.tensor(face_info_b['embedding']).to("cuda", dtype=self.dtype)
face_kps_identity_image_a = draw_kps(zero, face_info_a['kps'])
face_kps_identity_image_b = draw_kps(zero, face_info_b['kps'])
general_mask = PIL.Image.fromarray(np.ones((width, height, 3), dtype=np.uint8))
control_mask_1 = zero.copy()
x1, y1, x2, y2 = face_info_a["bbox"]
x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2)
control_mask_1[y1:y2, x1:x2] = 255
control_mask_1 = PIL.Image.fromarray(control_mask_1.astype(np.uint8))
control_mask_2 = zero.copy()
x1, y1, x2, y2 = face_info_b["bbox"]
x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2)
control_mask_2[y1:y2, x1:x2] = 255
control_mask_2 = PIL.Image.fromarray(control_mask_2.astype(np.uint8))
controlnet_masks = [control_mask_1, control_mask_2, general_mask]
ip_adapter_images = [face_emb_1, face_emb_2, style_image, ]
masks = self.ip_adapter_mask_processor.preprocess([control_mask_1, control_mask_2, general_mask], height=height, width=width)
ip_adapter_masks = [mask.unsqueeze(0) for mask in masks]
inpaint_mask = torch.logical_or(torch.tensor(np.array(control_mask_1)), torch.tensor(np.array(control_mask_2))).float()
inpaint_mask = PIL.Image.fromarray((inpaint_mask.numpy() * 255).astype(np.uint8)).convert("RGB")
new_ip_adapter_masks = []
for ip_img, mask in zip(ip_adapter_images, controlnet_masks):
if isinstance(ip_img, list):
num_images = len(ip_img)
mask = mask.repeat(1, num_images, 1, 1)
new_ip_adapter_masks.append(mask)
generator = torch.Generator(device="cpu").manual_seed(seed)
self.pipeline.set_ip_adapter_scale([identity_image_strength_1, identity_image_strength_2,
{
"down": { "block_2": [0.0, 0.0] }, #Composition
"up": { "block_0": [0.0, style_image_strength, 0.0] } #Style
}
])
images = self.pipeline(
prompt=prompt,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
num_inference_steps=number_of_steps,
num_images_per_prompt=number_of_images,
ip_adapter_image=ip_adapter_images,
cross_attention_kwargs={"ip_adapter_masks": ip_adapter_masks},
image=base_image,
mask_image=inpaint_mask,
i2i_mask_guidance_start=mask_guidance_start,
i2i_mask_guidance_end=mask_guidance_end,
control_image=[face_kps_identity_image_a, face_kps_identity_image_b, depth_image],
control_mask=controlnet_masks,
identity_control_indices=[(0,0), (1,1)],
controlnet_conditioning_scale=[identity_image_strength_1, identity_image_strength_2, depth_image_strength],
strength=1-base_image_strength,
generator=generator,
seed=seed,
).images
return images
def patch_onnx_runtime(
self,
inter_op_num_threads: int = 16,
intra_op_num_threads: int = 16,
omp_num_threads: int = 16,
):
import os
import onnxruntime as ort
os.environ["OMP_NUM_THREADS"] = str(omp_num_threads)
_default_session_options = ort.capi._pybind_state.get_default_session_options()
def get_default_session_options_new():
_default_session_options.inter_op_num_threads = inter_op_num_threads
_default_session_options.intra_op_num_threads = intra_op_num_threads
return _default_session_options
ort.capi._pybind_state.get_default_session_options = get_default_session_options_new
|