File size: 11,444 Bytes
6d3697a cd6510a f231efc 6d3697a 4b0a34a cd6510a 4b0a34a 39f5afc 4b0a34a 39f5afc 4b0a34a 39f5afc 4b0a34a 83cff4c 4b0a34a 83cff4c 4b0a34a 83cff4c 6d3697a 4b0a34a 6d3697a 95902a6 6d3697a 275ca2d 6d3697a 275ca2d 6d3697a 95902a6 f231efc cd6510a 95902a6 cd6510a 6d3697a f231efc 4b0a34a f231efc 6d3697a f231efc 6d3697a f231efc 6d3697a f231efc 6d3697a f231efc 6d3697a f231efc 6d3697a f231efc 6d3697a f231efc 6d3697a f231efc 6d3697a f231efc 6d3697a 671b8d8 f231efc cd6510a f231efc cd6510a 671b8d8 f231efc 671b8d8 95902a6 671b8d8 95902a6 6d3697a 83cff4c f231efc 83cff4c 4b0a34a cd6510a f231efc cd6510a 4b0a34a 6d3697a f231efc 6d3697a 4b0a34a f231efc 4b0a34a 83cff4c 4b0a34a cd6510a f231efc cd6510a 4b0a34a f231efc 95902a6 8c9e35f 4b0a34a 83cff4c 95902a6 4b0a34a f231efc 8c9e35f 95902a6 8c9e35f 95902a6 8c9e35f 95902a6 8c9e35f f231efc 8c9e35f 6d3697a 4b0a34a f231efc 6d3697a f231efc 6d3697a 4b0a34a 6d3697a b64d569 6d3697a f231efc 95902a6 8c9e35f b64d569 8c9e35f b64d569 6d3697a 4b0a34a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 |
import gradio as gr
import pandas as pd
import numpy as np
from numpy.typing import NDArray
from pyscipopt import Model, quicksum
# Define the quality tiers and names for the plants
PLANTS_TIERS = {
"radiant": "RADIANT",
"flourishing": "FLOURISHING",
"hardy": "HARDY",
"feeble": "FEEBLE",
"radiant_rarecolor": "RADIANT+RARE",
"flourishing_rarecolor": "FLOURISHING+RARE",
"hardy_rarecolor": "HARDY+RARE",
}
PLANTS_LABLES = {
"fanged_geranium": "Fanged Geranium",
"gillyweed": "Gillyweed",
"rose": "Rose",
"puffapod": "Puffapod",
"wild_pansy": "Wild Pansy",
"nifflers_fancy": "Niffler's Fancy",
"fanwort": "Fanwort",
"ladys_mantle": "Lady's Mantle",
"kelp": "Kelp",
"mandrake": "Mandrake",
"chinese_chomping_cabbage": "Chinese Chomping Cabbage",
"dragons_breath_macroalgae": "Dragon's Breath Macroalgae",
"peony": "Peony",
"begonia": "Begonia",
"mayflower": "Mayflower",
"hydrangea": "Hydrangea",
"ludwigia_glandulosa": "Ludwigia Glandulosa",
"daffodil": "Daffodil",
"water_hyacinth": "Water Hyacinth",
"lily_of_the_valley": "Lily of the Valley",
"mosaic_flower": "Mosaic Flower",
"sunflower": "Sunflower",
"mimbulus_mimbletonia": "Mimbulus Mimbletonia",
"water_lily": "Water Lily",
}
INTERFACE_TEXTS = {
"cn": {
"gold_label": "葭碧の金币预算:",
"strategies_label": "请选择凑单策略:",
"clear_btn_label": "❌清除",
"calculate_btn_label": "🛠计算",
"output_label": "计算结果:",
"strategy_options": [
("最小化售出株数(优先出售高价植物)", "MaximizeStock"),
("最大化售出株数(优先出售低价植物)", "MinimizeStock"),
],
},
"en": {
"gold_label": "Gabby's Gold Budget:",
"strategies_label": "Select a strategy:",
"clear_btn_label": "❌Clear",
"calculate_btn_label": "🛠Calculate",
"output_label": "Output:",
"strategy_options": [
(
"Minimize the number of plants sold (prioritize high-priced plants)",
"MaximizeStock",
),
(
"Maximize the number of plants sold (prioritize low-priced plants)",
"MinimizeStock",
),
],
},
}
# Import and process plant data
df = pd.read_csv("plants.csv")
# Convert columns to Categorical type and remove rows with NaN in 'gold' column
df["species"] = pd.Categorical(df["species"])
df["tier"] = pd.Categorical(df["tier"])
df = df.dropna(subset=["gold"])
df = df.astype(
{
"gold": int,
"gems": int,
}
)
def calculator(currency, budget, strategy, extra_rate, *amount):
"""
Calculate the optimal solution of plant sales based on the given budget
and inventory constraints.
Args:
*args (tuple): A tuple containing:
- budget (int): Gabby's gold budget.
- strategy (str): The selected strategy for selling plants ("MaximizeStock" or "MinimizeStock").
- extra_rate (int): The premium rate for selling plants.
- stocks (list of int): Stock levels of each plant type.
Returns:
str: A description of the optimal solution, including which plants to sell,
the total gold earned, and the remaining inventory.
Returns an error message if no solution is found.
"""
# currency: str, budget: int, strategy:str, extra_rate:int = args[0:4]
# budget: int = args[0] # 葭碧预算
# strategy: str = args[1] # 出售策略
# extra_rate: int = args[2] # 高价收购倍率
stocks: NDArray[np.int_ | np.integer] = np.array(
[x if x else 0 for x in amount]
) # 植物库存
# Plant names and prices
plants_names = [
f"{PLANTS_TIERS[row['tier']]} {PLANTS_LABLES[row['species']]}"
for index, row in df.iterrows()
]
price = df[currency] # 植物单价
sold_prices = np.array(price * (1 + extra_rate))
# Initialize the master problem
model = Model("BewilderingBlossom")
# Decision variables in master problem
x = [
model.addVar(
vtype="I", name=f"x_{i}", lb=0, ub=int(stocks[i]) if stocks[i] else 0
)
for i in range(len(stocks))
]
obj1 = quicksum(sold_prices[i] * x[i] for i in range(len(stocks)))
obj2 = quicksum(x[i] for i in range(len(stocks)))
# Objective: maximize total value of sold plants
model.setObjective(obj1, "maximize")
model.addCons(obj1 <= budget)
# first optimize
model.hideOutput()
model.optimize()
if model.getStatus() == "optimal":
optimal_total_value = model.getObjVal()
model.freeTransform()
model.setObjective(
obj2, "maximize" if strategy == "MinimizeStock" else "minimize"
)
model.addCons(obj1 == optimal_total_value)
model.optimize()
# Final solution processing
solution = []
total_price = 0
# total_count = 0
if model.getStatus() == "optimal":
for i, var in enumerate(x):
if (v := int(model.getVal(var))) > 0 and sold_prices[i] > 0:
solution.append(
f"{plants_names[i]} ({sold_prices[i]} {currency}): {v}\n"
)
total_price += v * sold_prices[i]
# total_count += v
if optimal_total_value == budget:
return f"Great! Found a combination of items with a total value equal to the budget ({budget} {currency}).😃\n\n{''.join(solution)}\nTotal value: {int(total_price)} {currency}\n" # Count: {int(model.getObjVal())}
return f"Oops! {int(budget - optimal_total_value)} {currency} short of the target value ({budget} {currency}).😣\n\n{''.join(solution)}\nTotal value: {int(total_price)} {currency}\n" # Count: {int(model.getObjVal())}
return "No solution found for the second optimization!"
return "No solution found for the first optimization!"
# 高亮每种植物的最高品质
css = """
.first-gold-box {background-color: #fafad2}
.first-gems-box {background-color: #fed9b4}
"""
with gr.Blocks(css=css) as demo:
gr.Markdown(
"""
<center><font size=8>HP-Magic-Awakened Herbologist Toolkit👾</font></center>
This program is essentially a solver for a variant of the knapsack problem.
Another more versatile [application](https://huggingface.co/spaces/oh-my-dear-ai/easy-knapsack-problem).
"""
)
# Create a Gradio interface with a column layout
with gr.Column():
# Add a row for the currency selection
currency_radio = gr.Radio(
choices=["gold", "gems"],
value="gold",
type="value",
label="Currency",
info="Select the currency:",
render=True,
)
# Add a row for the budget input
budget = gr.Number(
label="Target",
info="Gabby's Budget:", # "葭碧の金币预算:",
value=0,
minimum=0,
maximum=20000,
step=100,
)
acquisition_rate = gr.Dropdown(
choices=[
"0(Gabby's Acquisition)",
"+100%(HVA for Budding & Novice)",
"+200%(HVA for Junior & Practiced)",
"+300%(HVA for Natural & Master)",
],
value="0(Gabby's Acquisition)",
type="index",
label="Extra Acquisition Rate",
info="Select your high-value acquisition rate:",
)
# Add a radio selection for the strategy
selected_strategy = gr.Radio(
[
(
"Minimize the number of plants sold (prioritize high-priced plants)",
"MaximizeStock",
),
(
"Maximize the number of plants sold (prioritize low-priced plants)",
"MinimizeStock",
),
],
value="MaximizeStock",
label="Strategies",
info="Select a strategy:",
)
# TODO: Add a checkbox group for selecting plants
# selected_plants = gr.CheckboxGroup(
# choices=list(PLANTS_LABLES.values()),
# type="index",
# label="Plants",
# info="Select plants:",
# value=list(PLANTS_LABLES.values()),
# interactive=True,
# )
def show_plant_boxes(currency):
inventory = {}
species_set = set()
species_count = 0
new_species = False
for _, row in df.iterrows():
# Check if the plant should be shown based on the selected currency
if row[currency] != 0 and row["tier"] != "feeble":
species_set.add(row["species"])
new_species = len(species_set) > species_count
# Create the Number component for the plant inventory
inventory[f"{row['species']}_{row['tier']}"] = gr.Number(
label=PLANTS_LABLES[row["species"]],
info=f"{PLANTS_TIERS[row['tier']]} ${row[currency]}",
value=0,
precision=0,
minimum=0,
maximum=500,
step=10,
visible=True,
elem_classes=(f"first-{currency}-box" if new_species else None),
)
species_count = len(species_set)
else:
# If not shown, create a dummy invisible component
inventory[f"{row['species']}_{row['tier']}"] = gr.Number(visible=False)
# Return the updated inventory components
return list(inventory.values())
# Create the dynamic plant inventory inputs
with gr.Row() as inventory_row:
inventory = show_plant_boxes(currency_radio.value)
# Add a row for the Clear and Calculate buttons
with gr.Row():
clear_btn = gr.ClearButton(inventory, size="sm", value="❌Clear")
# Add a button to trigger the calculation
submit_btn = gr.Button(value="🛠Calculate")
# Add a row for the result textbox
with gr.Row():
result = gr.Textbox(label="Output")
# Set up the button click event to call the calculator function
submit_btn.click(
calculator,
inputs=[currency_radio, budget, selected_strategy, acquisition_rate]
+ inventory,
outputs=[result],
api_name=False,
)
# Update the inventory when the currency changes
currency_radio.change(
fn=lambda selected_currency: show_plant_boxes(
selected_currency
), # Adjusted function to return only the components
inputs=[currency_radio],
outputs=inventory, # Update each child in the inventory_row
)
# Launch the Gradio application
demo.queue(api_open=False)
demo.launch(max_threads=5, share=False)
|