File size: 7,258 Bytes
d299fb7
 
 
 
d4b77ac
 
 
d299fb7
6101b7d
d4b77ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
from SiamMask.models.siammask_sharp import SiamMask
from SiamMask.models.features import MultiStageFeature
from SiamMask.models.rpn import RPN, DepthCorr
from SiamMask.models.mask import Mask
import torch
import torch.nn as nn
import torch.nn.functional as F
from SiamMask.utils.load_helper import load_pretrain
from SiamMask.experiments.siammask_sharp.resnet import resnet50


class ResDownS(nn.Module):
    def __init__(self, inplane, outplane):
        super(ResDownS, self).__init__()
        self.downsample = nn.Sequential(
                nn.Conv2d(inplane, outplane, kernel_size=1, bias=False),
                nn.BatchNorm2d(outplane))

    def forward(self, x):
        x = self.downsample(x)
        if x.size(3) < 20:
            l = 4
            r = -4
            x = x[:, :, l:r, l:r]
        return x


class ResDown(MultiStageFeature):
    def __init__(self, pretrain=False):
        super(ResDown, self).__init__()
        self.features = resnet50(layer3=True, layer4=False)
        if pretrain:
            load_pretrain(self.features, 'resnet.model')

        self.downsample = ResDownS(1024, 256)

        self.layers = [self.downsample, self.features.layer2, self.features.layer3]
        self.train_nums = [1, 3]
        self.change_point = [0, 0.5]

        self.unfix(0.0)

    def param_groups(self, start_lr, feature_mult=1):
        lr = start_lr * feature_mult

        def _params(module, mult=1):
            params = list(filter(lambda x:x.requires_grad, module.parameters()))
            if len(params):
                return [{'params': params, 'lr': lr * mult}]
            else:
                return []

        groups = []
        groups += _params(self.downsample)
        groups += _params(self.features, 0.1)
        return groups

    def forward(self, x):
        output = self.features(x)
        p3 = self.downsample(output[-1])
        return p3

    def forward_all(self, x):
        output = self.features(x)
        p3 = self.downsample(output[-1])
        return output, p3


class UP(RPN):
    def __init__(self, anchor_num=5, feature_in=256, feature_out=256):
        super(UP, self).__init__()

        self.anchor_num = anchor_num
        self.feature_in = feature_in
        self.feature_out = feature_out

        self.cls_output = 2 * self.anchor_num
        self.loc_output = 4 * self.anchor_num

        self.cls = DepthCorr(feature_in, feature_out, self.cls_output)
        self.loc = DepthCorr(feature_in, feature_out, self.loc_output)

    def forward(self, z_f, x_f):
        cls = self.cls(z_f, x_f)
        loc = self.loc(z_f, x_f)
        return cls, loc


class MaskCorr(Mask):
    def __init__(self, oSz=63):
        super(MaskCorr, self).__init__()
        self.oSz = oSz
        self.mask = DepthCorr(256, 256, self.oSz**2)

    def forward(self, z, x):
        return self.mask(z, x)


class Refine(nn.Module):
    def __init__(self):
        super(Refine, self).__init__()
        self.v0 = nn.Sequential(nn.Conv2d(64, 16, 3, padding=1), nn.ReLU(),
                           nn.Conv2d(16, 4, 3, padding=1),nn.ReLU())

        self.v1 = nn.Sequential(nn.Conv2d(256, 64, 3, padding=1), nn.ReLU(),
                           nn.Conv2d(64, 16, 3, padding=1), nn.ReLU())

        self.v2 = nn.Sequential(nn.Conv2d(512, 128, 3, padding=1), nn.ReLU(),
                           nn.Conv2d(128, 32, 3, padding=1), nn.ReLU())

        self.h2 = nn.Sequential(nn.Conv2d(32, 32, 3, padding=1), nn.ReLU(),
                           nn.Conv2d(32, 32, 3, padding=1), nn.ReLU())

        self.h1 = nn.Sequential(nn.Conv2d(16, 16, 3, padding=1), nn.ReLU(),
                           nn.Conv2d(16, 16, 3, padding=1), nn.ReLU())

        self.h0 = nn.Sequential(nn.Conv2d(4, 4, 3, padding=1), nn.ReLU(),
                           nn.Conv2d(4, 4, 3, padding=1), nn.ReLU())

        self.deconv = nn.ConvTranspose2d(256, 32, 15, 15)

        self.post0 = nn.Conv2d(32, 16, 3, padding=1)
        self.post1 = nn.Conv2d(16, 4, 3, padding=1)
        self.post2 = nn.Conv2d(4, 1, 3, padding=1)
        
        for modules in [self.v0, self.v1, self.v2, self.h2, self.h1, self.h0, self.deconv, self.post0, self.post1, self.post2,]:
            for l in modules.modules():
                if isinstance(l, nn.Conv2d):
                    nn.init.kaiming_uniform_(l.weight, a=1)

    def forward(self, f, corr_feature, pos=None, test=False):
        if test:
            p0 = torch.nn.functional.pad(f[0], [16, 16, 16, 16])[:, :, 4*pos[0]:4*pos[0]+61, 4*pos[1]:4*pos[1]+61]
            p1 = torch.nn.functional.pad(f[1], [8, 8, 8, 8])[:, :, 2 * pos[0]:2 * pos[0] + 31, 2 * pos[1]:2 * pos[1] + 31]
            p2 = torch.nn.functional.pad(f[2], [4, 4, 4, 4])[:, :, pos[0]:pos[0] + 15, pos[1]:pos[1] + 15]
        else:
            p0 = F.unfold(f[0], (61, 61), padding=0, stride=4).permute(0, 2, 1).contiguous().view(-1, 64, 61, 61)
            if not (pos is None): p0 = torch.index_select(p0, 0, pos)
            p1 = F.unfold(f[1], (31, 31), padding=0, stride=2).permute(0, 2, 1).contiguous().view(-1, 256, 31, 31)
            if not (pos is None): p1 = torch.index_select(p1, 0, pos)
            p2 = F.unfold(f[2], (15, 15), padding=0, stride=1).permute(0, 2, 1).contiguous().view(-1, 512, 15, 15)
            if not (pos is None): p2 = torch.index_select(p2, 0, pos)

        if not(pos is None):
            p3 = corr_feature[:, :, pos[0], pos[1]].view(-1, 256, 1, 1)
        else:
            p3 = corr_feature.permute(0, 2, 3, 1).contiguous().view(-1, 256, 1, 1)

        out = self.deconv(p3)
        out = self.post0(F.upsample(self.h2(out) + self.v2(p2), size=(31, 31)))
        out = self.post1(F.upsample(self.h1(out) + self.v1(p1), size=(61, 61)))
        out = self.post2(F.upsample(self.h0(out) + self.v0(p0), size=(127, 127)))
        out = out.view(-1, 127*127)
        return out

    def param_groups(self, start_lr, feature_mult=1):
        params = filter(lambda x:x.requires_grad, self.parameters())
        params = [{'params': params, 'lr': start_lr * feature_mult}]
        return params


class Custom(SiamMask):
    def __init__(self, pretrain=False, **kwargs):
        super(Custom, self).__init__(**kwargs)
        self.features = ResDown(pretrain=pretrain)
        self.rpn_model = UP(anchor_num=self.anchor_num, feature_in=256, feature_out=256)
        self.mask_model = MaskCorr()
        self.refine_model = Refine()

    def refine(self, f, pos=None):
        return self.refine_model(f, pos)

    def template(self, template):
        self.zf = self.features(template)

    def track(self, search):
        search = self.features(search)
        rpn_pred_cls, rpn_pred_loc = self.rpn(self.zf, search)
        return rpn_pred_cls, rpn_pred_loc

    def track_mask(self, search):
        self.feature, self.search = self.features.forward_all(search)
        rpn_pred_cls, rpn_pred_loc = self.rpn(self.zf, self.search)
        self.corr_feature = self.mask_model.mask.forward_corr(self.zf, self.search)
        pred_mask = self.mask_model.mask.head(self.corr_feature)
        return rpn_pred_cls, rpn_pred_loc, pred_mask

    def track_refine(self, pos):
        pred_mask = self.refine_model(self.feature, self.corr_feature, pos=pos, test=True)
        return pred_mask