File size: 4,602 Bytes
d4b77ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import numpy as np
import torch
import torch.nn as nn

# https://zhuanlan.zhihu.com/p/112030273
def warp_optical_flow(batch_x, batch_flow):
    """
    Modified from https://github.com/NVlabs/PWC-Net/blob/fc6ebf9a70a7387164df09a3a2070ba16f9c1ede/PyTorch/models/PWCNet.py  # NOQA
    warp an im2 back to im1, according to the optical flow
    x: [B, L, C, H, W] (im2)
    flo: [B, L, 2, H, W] flow
    """
    B, L, C, H, W = batch_x.shape
    B = B * L
    x = batch_x.contiguous().view(-1, C, H, W)
    flo = batch_flow.view(-1, 2, H, W)
    # mesh grid
    xx = torch.arange(0, W).view(1, -1).repeat(H, 1)
    yy = torch.arange(0, H).view(-1, 1).repeat(1, W)
    xx = xx.view(1, 1, H, W).repeat(B, 1, 1, 1)
    yy = yy.view(1, 1, H, W).repeat(B, 1, 1, 1)
    grid = torch.cat((xx, yy), 1).float()

    if x.is_cuda:
        grid = grid.cuda()
    vgrid = grid + flo

    # scale grid to [-1, 1]
    vgrid[:, 0, :, :] = 2.0 * vgrid[:, 0, :, :] / max(W - 1, 1) - 1.0
    vgrid[:, 1, :, :] = 2.0 * vgrid[:, 1, :, :] / max(H - 1, 1) - 1.0

    vgrid = vgrid.permute(0, 2, 3, 1)  # B, H, W, 2(compatible with API)
    output = nn.functional.grid_sample(x, vgrid)  # 按照vgrid将x warp到output张量上
    mask = torch.autograd.Variable(torch.ones(x.size())).cuda()
    mask = nn.functional.grid_sample(mask, vgrid)  # 这个我觉得没有太大意义,因为warp之后还是1(mask默认全是1)

    mask[mask < 0.9999] = 0
    mask[mask > 0] = 1  # 仍然全是1

    result = output * mask
    return result.view(-1, L, C, H, W)


UNKNOWN_FLOW_THRESH = 1e7


def flow_to_image(flow):
    """
    Convert flow into middlebury color code image
    :param flow: optical flow map
    :return: optical flow image in middlebury color
    """
    u = flow[:, :, 0]
    v = flow[:, :, 1]

    maxu = -999.
    maxv = -999.
    minu = 999.
    minv = 999.

    idxUnknow = (abs(u) > UNKNOWN_FLOW_THRESH) | (abs(v) > UNKNOWN_FLOW_THRESH)
    u[idxUnknow] = 0
    v[idxUnknow] = 0

    maxu = max(maxu, np.max(u))
    minu = min(minu, np.min(u))

    maxv = max(maxv, np.max(v))
    minv = min(minv, np.min(v))

    rad = np.sqrt(u ** 2 + v ** 2)
    maxrad = max(-1, np.max(rad))

    u = u / (maxrad + np.finfo(float).eps)
    v = v / (maxrad + np.finfo(float).eps)

    img = compute_color(u, v)

    idx = np.repeat(idxUnknow[:, :, np.newaxis], 3, axis=2)
    img[idx] = 0

    return np.uint8(img)


def compute_color(u, v):
    """
    compute optical flow color map
    :param u: optical flow horizontal map
    :param v: optical flow vertical map
    :return: optical flow in color code
    """
    [h, w] = u.shape
    img = np.zeros([h, w, 3])
    nanIdx = np.isnan(u) | np.isnan(v)
    u[nanIdx] = 0
    v[nanIdx] = 0

    colorwheel = make_color_wheel()
    ncols = np.size(colorwheel, 0)

    rad = np.sqrt(u ** 2 + v ** 2)

    a = np.arctan2(-v, -u) / np.pi

    fk = (a + 1) / 2 * (ncols - 1) + 1

    k0 = np.floor(fk).astype(int)

    k1 = k0 + 1
    k1[k1 == ncols + 1] = 1
    f = fk - k0

    for i in range(0, np.size(colorwheel, 1)):
        tmp = colorwheel[:, i]
        col0 = tmp[k0 - 1] / 255
        col1 = tmp[k1 - 1] / 255
        col = (1 - f) * col0 + f * col1

        idx = rad <= 1
        col[idx] = 1 - rad[idx] * (1 - col[idx])
        notidx = np.logical_not(idx)

        col[notidx] *= 0.75
        img[:, :, i] = np.uint8(np.floor(255 * col * (1 - nanIdx)))

    return img


def make_color_wheel():
    """
    Generate color wheel according Middlebury color code
    :return: Color wheel
    """
    RY = 15
    YG = 6
    GC = 4
    CB = 11
    BM = 13
    MR = 6

    ncols = RY + YG + GC + CB + BM + MR

    colorwheel = np.zeros([ncols, 3])

    col = 0

    # RY
    colorwheel[0:RY, 0] = 255
    colorwheel[0:RY, 1] = np.transpose(np.floor(255 * np.arange(0, RY) / RY))
    col += RY

    # YG
    colorwheel[col:col + YG, 0] = 255 - np.transpose(np.floor(255 * np.arange(0, YG) / YG))
    colorwheel[col:col + YG, 1] = 255
    col += YG

    # GC
    colorwheel[col:col + GC, 1] = 255
    colorwheel[col:col + GC, 2] = np.transpose(np.floor(255 * np.arange(0, GC) / GC))
    col += GC

    # CB
    colorwheel[col:col + CB, 1] = 255 - np.transpose(np.floor(255 * np.arange(0, CB) / CB))
    colorwheel[col:col + CB, 2] = 255
    col += CB

    # BM
    colorwheel[col:col + BM, 2] = 255
    colorwheel[col:col + BM, 0] = np.transpose(np.floor(255 * np.arange(0, BM) / BM))
    col += + BM

    # MR
    colorwheel[col:col + MR, 2] = 255 - np.transpose(np.floor(255 * np.arange(0, MR) / MR))
    colorwheel[col:col + MR, 0] = 255

    return colorwheel