Spaces:
Sleeping
Sleeping
File size: 7,282 Bytes
d4b77ac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 |
import random
import pickle
import logging
import torch
import cv2
import os
from torch.utils.data.dataset import Dataset
import numpy as np
from skimage.feature import canny
from .util.STTN_mask import create_random_shape_with_random_motion
from cvbase import read_flow, flow2rgb
from .util.flow_utils import region_fill as rf
import imageio
logger = logging.getLogger('base')
class VideoBasedDataset(Dataset):
def __init__(self, opt, dataInfo):
self.opt = opt
self.mode = opt['mode']
self.sampleMethod = opt['sample']
self.dataInfo = dataInfo
self.flow_height, self.flow_width = dataInfo['flow']['flow_height'], dataInfo['flow']['flow_width']
self.data_path = dataInfo['flow_path']
self.frame_path = dataInfo['frame_path']
self.train_list = os.listdir(self.data_path)
self.name2length = self.dataInfo['name2len']
self.require_edge = opt['use_edges']
self.sigma = dataInfo['edge']['sigma']
self.low_threshold = dataInfo['edge']['low_threshold']
self.high_threshold = dataInfo['edge']['high_threshold']
with open(self.name2length, 'rb') as f:
self.name2len = pickle.load(f)
self.norm = opt['norm']
self.sequenceLen = self.opt['num_flows']
self.flow_interval = self.opt['flow_interval']
self.halfLen = self.sequenceLen // 2
def __len__(self):
return len(self.train_list)
def __getitem__(self, idx):
try:
item = self.load_item(idx)
except:
print('Loading error: ' + self.train_list[idx])
item = self.load_item(0)
return item
def frameSample(self, flowLen):
if self.sampleMethod == 'random':
indices = [i for i in range(flowLen)]
sampledIndices = random.sample(indices, self.sequenceLen)
else:
sampledIndices = []
pivot = random.randint(0, flowLen - 1)
for i in range(-self.halfLen, self.halfLen + 1):
index = pivot + i * self.flow_interval
if index < 0:
index = 0
if index >= flowLen:
index = flowLen - 1
sampledIndices.append(index)
return sampledIndices
def load_item(self, idx):
info = {}
video = self.train_list[idx]
info['name'] = video
if np.random.uniform(0, 1) > 0.5:
direction = 'forward_flo'
else:
direction = 'backward_flo'
flow_dir = os.path.join(self.data_path, video, direction)
frame_dir = os.path.join(self.frame_path, video)
flowLen = self.name2len[video] - 1
assert flowLen > self.sequenceLen, 'Flow length {} is not enough'.format(flowLen)
sampledIndices = self.frameSample(flowLen)
candidateMasks = create_random_shape_with_random_motion(self.sequenceLen, 0.9, 1.1, 1,
10)
flows, diffused_flows, masks = [], [], []
current_frames, shift_frames = None, None
mask_counter = 0
for i in sampledIndices:
flow = read_flow(os.path.join(flow_dir, '{:05d}.flo'.format(i)))
mask = self.read_mask(candidateMasks[mask_counter], self.flow_height, self.flow_width)
mask_counter += 1
flow = self.flow_tf(flow, self.flow_height, self.flow_width)
diffused_flow = self.diffusion_fill(flow, mask)
flows.append(flow)
masks.append(mask)
diffused_flows.append(diffused_flow)
targetIndex = sampledIndices[self.sequenceLen // 2]
current_frames, shift_frames = self.read_frames(frame_dir, targetIndex, direction, self.flow_width,
self.flow_height)
flow_gray, edge = self.load_edge(flows[self.halfLen])
inputs = {'flows': flows, 'diffused_flows': diffused_flows, 'current_frame': current_frames,
'shift_frame': shift_frames, 'edges': edge, 'masks': masks, 'flow_gray': flow_gray}
return self.to_tensor(inputs)
def read_frames(self, frame_dir, index, direction, width, height):
if direction == 'forward_flo':
current_frame = os.path.join(frame_dir, '{:05d}.jpg'.format(index))
shift_frame = os.path.join(frame_dir, '{:05d}.jpg'.format(index + 1))
else:
current_frame = os.path.join(frame_dir, '{:05d}.jpg'.format(index + 1))
shift_frame = os.path.join(frame_dir, '{:05d}.jpg'.format(index))
current_frame = imageio.imread(current_frame)
shift_frame = imageio.imread(shift_frame)
current_frame = cv2.resize(current_frame, (width, height), cv2.INTER_LINEAR)
shift_frame = cv2.resize(shift_frame, (width, height), cv2.INTER_LINEAR)
current_frame = current_frame / 255.
shift_frame = shift_frame / 255.
return current_frame, shift_frame
def diffusion_fill(self, flow, mask):
flow_filled = np.zeros(flow.shape)
flow_filled[:, :, 0] = rf.regionfill(flow[:, :, 0] * (1 - mask), mask)
flow_filled[:, :, 1] = rf.regionfill(flow[:, :, 1] * (1 - mask), mask)
return flow_filled
def flow_tf(self, flow, height, width):
flow_shape = flow.shape
flow_resized = cv2.resize(flow, (width, height), cv2.INTER_LINEAR)
flow_resized[:, :, 0] *= (float(width) / float(flow_shape[1]))
flow_resized[:, :, 1] *= (float(height) / float(flow_shape[0]))
return flow_resized
def read_mask(self, mask, height, width):
mask = np.array(mask)
mask = mask / 255.
raw_mask = (mask > 0.5).astype(np.uint8)
raw_mask = cv2.resize(raw_mask, dsize=(width, height), interpolation=cv2.INTER_NEAREST)
return raw_mask
def load_edge(self, flow):
gray_flow = (flow[:, :, 0] ** 2 + flow[:, :, 1] ** 2) ** 0.5
factor = gray_flow.max()
gray_flow = gray_flow / factor
flow_rgb = flow2rgb(flow)
flow_gray = cv2.cvtColor(flow_rgb, cv2.COLOR_RGB2GRAY)
return gray_flow, canny(flow_gray, sigma=self.sigma, mask=None, low_threshold=self.low_threshold,
high_threshold=self.high_threshold).astype(np.float)
def to_tensor(self, data_list):
"""
Args:
data_list: a numpy.array list
Returns: a torch.tensor list with the None entries removed
"""
keys = list(data_list.keys())
for key in keys:
if data_list[key] is None or data_list[key] == []:
data_list.pop(key)
else:
item = data_list[key]
if not isinstance(item, list):
if len(item.shape) == 2:
item = item[:, :, np.newaxis]
item = torch.from_numpy(np.transpose(item, (2, 0, 1))).float()
else:
item = np.stack(item, axis=0)
if len(item.shape) == 3:
item = item[:, :, :, np.newaxis]
item = torch.from_numpy(np.transpose(item, (3, 0, 1, 2))).float()
data_list[key] = item
return data_list
|