File size: 7,282 Bytes
d4b77ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import random

import pickle
import logging
import torch
import cv2
import os

from torch.utils.data.dataset import Dataset
import numpy as np
from skimage.feature import canny
from .util.STTN_mask import create_random_shape_with_random_motion
from cvbase import read_flow, flow2rgb
from .util.flow_utils import region_fill as rf
import imageio

logger = logging.getLogger('base')


class VideoBasedDataset(Dataset):
    def __init__(self, opt, dataInfo):
        self.opt = opt
        self.mode = opt['mode']
        self.sampleMethod = opt['sample']
        self.dataInfo = dataInfo
        self.flow_height, self.flow_width = dataInfo['flow']['flow_height'], dataInfo['flow']['flow_width']
        self.data_path = dataInfo['flow_path']
        self.frame_path = dataInfo['frame_path']
        self.train_list = os.listdir(self.data_path)
        self.name2length = self.dataInfo['name2len']
        self.require_edge = opt['use_edges']
        self.sigma = dataInfo['edge']['sigma']
        self.low_threshold = dataInfo['edge']['low_threshold']
        self.high_threshold = dataInfo['edge']['high_threshold']
        with open(self.name2length, 'rb') as f:
            self.name2len = pickle.load(f)
        self.norm = opt['norm']
        self.sequenceLen = self.opt['num_flows']
        self.flow_interval = self.opt['flow_interval']
        self.halfLen = self.sequenceLen // 2

    def __len__(self):
        return len(self.train_list)

    def __getitem__(self, idx):
        try:
            item = self.load_item(idx)
        except:
            print('Loading error: ' + self.train_list[idx])
            item = self.load_item(0)
        return item

    def frameSample(self, flowLen):
        if self.sampleMethod == 'random':
            indices = [i for i in range(flowLen)]
            sampledIndices = random.sample(indices, self.sequenceLen)
        else:
            sampledIndices = []
            pivot = random.randint(0, flowLen - 1)
            for i in range(-self.halfLen, self.halfLen + 1):
                index = pivot + i * self.flow_interval
                if index < 0:
                    index = 0
                if index >= flowLen:
                    index = flowLen - 1
                sampledIndices.append(index)
        return sampledIndices

    def load_item(self, idx):
        info = {}
        video = self.train_list[idx]
        info['name'] = video
        if np.random.uniform(0, 1) > 0.5:
            direction = 'forward_flo'
        else:
            direction = 'backward_flo'
        flow_dir = os.path.join(self.data_path, video, direction)
        frame_dir = os.path.join(self.frame_path, video)
        flowLen = self.name2len[video] - 1
        assert flowLen > self.sequenceLen, 'Flow length {} is not enough'.format(flowLen)
        sampledIndices = self.frameSample(flowLen)
        candidateMasks = create_random_shape_with_random_motion(self.sequenceLen, 0.9, 1.1, 1,
                                                                10)
        flows, diffused_flows, masks = [], [], []
        current_frames, shift_frames = None, None
        mask_counter = 0
        for i in sampledIndices:
            flow = read_flow(os.path.join(flow_dir, '{:05d}.flo'.format(i)))
            mask = self.read_mask(candidateMasks[mask_counter], self.flow_height, self.flow_width)
            mask_counter += 1
            flow = self.flow_tf(flow, self.flow_height, self.flow_width)
            diffused_flow = self.diffusion_fill(flow, mask)
            flows.append(flow)
            masks.append(mask)
            diffused_flows.append(diffused_flow)
        targetIndex = sampledIndices[self.sequenceLen // 2]
        current_frames, shift_frames = self.read_frames(frame_dir, targetIndex, direction, self.flow_width,
                                                        self.flow_height)
        flow_gray, edge = self.load_edge(flows[self.halfLen])
        inputs = {'flows': flows, 'diffused_flows': diffused_flows, 'current_frame': current_frames,
                  'shift_frame': shift_frames, 'edges': edge, 'masks': masks, 'flow_gray': flow_gray}
        return self.to_tensor(inputs)

    def read_frames(self, frame_dir, index, direction, width, height):
        if direction == 'forward_flo':
            current_frame = os.path.join(frame_dir, '{:05d}.jpg'.format(index))
            shift_frame = os.path.join(frame_dir, '{:05d}.jpg'.format(index + 1))
        else:
            current_frame = os.path.join(frame_dir, '{:05d}.jpg'.format(index + 1))
            shift_frame = os.path.join(frame_dir, '{:05d}.jpg'.format(index))
        current_frame = imageio.imread(current_frame)
        shift_frame = imageio.imread(shift_frame)
        current_frame = cv2.resize(current_frame, (width, height), cv2.INTER_LINEAR)
        shift_frame = cv2.resize(shift_frame, (width, height), cv2.INTER_LINEAR)
        current_frame = current_frame / 255.
        shift_frame = shift_frame / 255.
        return current_frame, shift_frame

    def diffusion_fill(self, flow, mask):
        flow_filled = np.zeros(flow.shape)
        flow_filled[:, :, 0] = rf.regionfill(flow[:, :, 0] * (1 - mask), mask)
        flow_filled[:, :, 1] = rf.regionfill(flow[:, :, 1] * (1 - mask), mask)
        return flow_filled

    def flow_tf(self, flow, height, width):
        flow_shape = flow.shape
        flow_resized = cv2.resize(flow, (width, height), cv2.INTER_LINEAR)
        flow_resized[:, :, 0] *= (float(width) / float(flow_shape[1]))
        flow_resized[:, :, 1] *= (float(height) / float(flow_shape[0]))
        return flow_resized

    def read_mask(self, mask, height, width):
        mask = np.array(mask)
        mask = mask / 255.
        raw_mask = (mask > 0.5).astype(np.uint8)
        raw_mask = cv2.resize(raw_mask, dsize=(width, height), interpolation=cv2.INTER_NEAREST)
        return raw_mask

    def load_edge(self, flow):
        gray_flow = (flow[:, :, 0] ** 2 + flow[:, :, 1] ** 2) ** 0.5
        factor = gray_flow.max()
        gray_flow = gray_flow / factor
        flow_rgb = flow2rgb(flow)
        flow_gray = cv2.cvtColor(flow_rgb, cv2.COLOR_RGB2GRAY)
        return gray_flow, canny(flow_gray, sigma=self.sigma, mask=None, low_threshold=self.low_threshold,
                     high_threshold=self.high_threshold).astype(np.float)

    def to_tensor(self, data_list):
        """

        Args:
            data_list: a numpy.array list

        Returns: a torch.tensor list with the None entries removed

        """
        keys = list(data_list.keys())
        for key in keys:
            if data_list[key] is None or data_list[key] == []:
                data_list.pop(key)
            else:
                item = data_list[key]
                if not isinstance(item, list):
                    if len(item.shape) == 2:
                        item = item[:, :, np.newaxis]
                    item = torch.from_numpy(np.transpose(item, (2, 0, 1))).float()
                else:
                    item = np.stack(item, axis=0)
                    if len(item.shape) == 3:
                        item = item[:, :, :, np.newaxis]
                    item = torch.from_numpy(np.transpose(item, (3, 0, 1, 2))).float()
                data_list[key] = item
        return data_list