File size: 18,499 Bytes
d4b77ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision.models as models
import numpy as np
from .fbConsistencyCheck import image_warp


class FlowWarpingLoss(nn.Module):
    def __init__(self, metric):
        super(FlowWarpingLoss, self).__init__()
        self.metric = metric

    def warp(self, x, flow):
        """

        Args:
            x: torch tensor with shape [b, c, h, w], the x can be 3 (for rgb frame) or 2 (for optical flow)
            flow: torch tensor with shape [b, 2, h, w]

        Returns: the warped x (can be an image or an optical flow)

        """
        h, w = x.shape[2:]
        device = x.device
        # normalize the flow to [-1~1]
        flow = torch.cat([flow[:, 0:1, :, :] / ((w - 1) / 2), flow[:, 1:2, :, :] / ((h - 1) / 2)], dim=1)
        flow = flow.permute(0, 2, 3, 1)  # change to [b, h, w, c]
        # generate meshgrid
        x_idx = np.linspace(-1, 1, w)
        y_idx = np.linspace(-1, 1, h)
        X_idx, Y_idx = np.meshgrid(x_idx, y_idx)
        grid = torch.cat((torch.from_numpy(X_idx.astype('float32')).unsqueeze(0).unsqueeze(3),
                          torch.from_numpy(Y_idx.astype('float32')).unsqueeze(0).unsqueeze(3)), 3).to(device)
        output = torch.nn.functional.grid_sample(x, grid + flow, mode='bilinear', padding_mode='zeros')
        return output

    def __call__(self, x, y, flow, mask):
        """
        image/flow warping, only support the single image/flow warping
        Args:
            x: Can be optical flow or image with shape [b, c, h, w], c can be 2 or 3
            y: The ground truth of x (can be the extracted optical flow or image)
            flow: The flow used to warp x, whose shape is [b, 2, h, w]
            mask: The mask which indicates the hole of x, which must be [b, 1, h, w]

        Returns: the warped image/optical flow

        """
        warped_x = self.warp(x, flow)
        loss = self.metric(warped_x * mask, y * mask)
        return loss


class TVLoss():
    # shift one pixel to get difference ( for both x and y direction)
    def __init__(self):
        super(TVLoss, self).__init__()

    def __call__(self, x):
        loss = torch.mean(torch.abs(x[:, :, :, :-1] - x[:, :, :, 1:])) + torch.mean(
            torch.abs(x[:, :, :-1, :] - x[:, :, 1:, :]))
        return loss


class WarpLoss(nn.Module):
    def __init__(self):
        super(WarpLoss, self).__init__()
        self.metric = nn.L1Loss()

    def forward(self, flow, mask, img1, img2):
        """

        Args:
            flow: flow indicates the motion from img1 to img2
            mask: mask corresponds to img1
            img1: frame 1
            img2: frame t+1

        Returns: warp loss from img2 to img1

        """
        img2_warped = image_warp(img2, flow)
        loss = self.metric(img2_warped * mask, img1 * mask)
        return loss


class AdversarialLoss(nn.Module):
    r"""
    Adversarial loss
    https://arxiv.org/abs/1711.10337
    """

    def __init__(self, type='nsgan', target_real_label=1.0, target_fake_label=0.0):
        r"""
        type = nsgan | lsgan | hinge
        """
        super(AdversarialLoss, self).__init__()

        self.type = type
        self.register_buffer('real_label', torch.tensor(target_real_label))
        self.register_buffer('fake_label', torch.tensor(target_fake_label))

        if type == 'nsgan':
            self.criterion = nn.BCELoss()

        elif type == 'lsgan':
            self.criterion = nn.MSELoss()

        elif type == 'hinge':
            self.criterion = nn.ReLU()

    def __call__(self, outputs, is_real, is_disc=None):
        if self.type == 'hinge':
            if is_disc:
                if is_real:
                    outputs = -outputs
                return self.criterion(1 + outputs).mean()
            else:
                return (-outputs).mean()

        else:
            labels = (self.real_label if is_real else self.fake_label).expand_as(outputs)
            loss = self.criterion(outputs, labels)
            return loss


class StyleLoss(nn.Module):
    r"""
    Perceptual loss, VGG-based
    https://arxiv.org/abs/1603.08155
    https://github.com/dxyang/StyleTransfer/blob/master/utils.py
    """

    def __init__(self):
        super(StyleLoss, self).__init__()
        self.add_module('vgg', VGG19())
        self.criterion = torch.nn.L1Loss()

    def compute_gram(self, x):
        b, ch, h, w = x.size()
        f = x.view(b, ch, w * h)
        f_T = f.transpose(1, 2)
        G = f.bmm(f_T) / (h * w * ch)

        return G

    def __call__(self, x, y):
        # Compute features
        x_vgg, y_vgg = self.vgg(x), self.vgg(y)

        # Compute loss
        style_loss = 0.0
        style_loss += self.criterion(self.compute_gram(x_vgg['relu2_2']), self.compute_gram(y_vgg['relu2_2']))
        style_loss += self.criterion(self.compute_gram(x_vgg['relu3_4']), self.compute_gram(y_vgg['relu3_4']))
        style_loss += self.criterion(self.compute_gram(x_vgg['relu4_4']), self.compute_gram(y_vgg['relu4_4']))
        style_loss += self.criterion(self.compute_gram(x_vgg['relu5_2']), self.compute_gram(y_vgg['relu5_2']))

        return style_loss


class PerceptualLoss(nn.Module):
    r"""
    Perceptual loss, VGG-based
    https://arxiv.org/abs/1603.08155
    https://github.com/dxyang/StyleTransfer/blob/master/utils.py
    """

    def __init__(self, weights=[1.0, 1.0, 1.0, 1.0, 1.0]):
        super(PerceptualLoss, self).__init__()
        self.add_module('vgg', VGG19())
        self.criterion = torch.nn.L1Loss()
        self.weights = weights

    def __call__(self, x, y):
        # Compute features
        x_vgg, y_vgg = self.vgg(x), self.vgg(y)

        content_loss = 0.0
        content_loss += self.weights[0] * self.criterion(x_vgg['relu1_1'], y_vgg['relu1_1'])
        content_loss += self.weights[1] * self.criterion(x_vgg['relu2_1'], y_vgg['relu2_1'])
        content_loss += self.weights[2] * self.criterion(x_vgg['relu3_1'], y_vgg['relu3_1'])
        content_loss += self.weights[3] * self.criterion(x_vgg['relu4_1'], y_vgg['relu4_1'])
        content_loss += self.weights[4] * self.criterion(x_vgg['relu5_1'], y_vgg['relu5_1'])

        return content_loss


class VGG19(torch.nn.Module):
    def __init__(self):
        super(VGG19, self).__init__()
        features = models.vgg19(pretrained=True).features
        self.relu1_1 = torch.nn.Sequential()
        self.relu1_2 = torch.nn.Sequential()

        self.relu2_1 = torch.nn.Sequential()
        self.relu2_2 = torch.nn.Sequential()

        self.relu3_1 = torch.nn.Sequential()
        self.relu3_2 = torch.nn.Sequential()
        self.relu3_3 = torch.nn.Sequential()
        self.relu3_4 = torch.nn.Sequential()

        self.relu4_1 = torch.nn.Sequential()
        self.relu4_2 = torch.nn.Sequential()
        self.relu4_3 = torch.nn.Sequential()
        self.relu4_4 = torch.nn.Sequential()

        self.relu5_1 = torch.nn.Sequential()
        self.relu5_2 = torch.nn.Sequential()
        self.relu5_3 = torch.nn.Sequential()
        self.relu5_4 = torch.nn.Sequential()

        for x in range(2):
            self.relu1_1.add_module(str(x), features[x])

        for x in range(2, 4):
            self.relu1_2.add_module(str(x), features[x])

        for x in range(4, 7):
            self.relu2_1.add_module(str(x), features[x])

        for x in range(7, 9):
            self.relu2_2.add_module(str(x), features[x])

        for x in range(9, 12):
            self.relu3_1.add_module(str(x), features[x])

        for x in range(12, 14):
            self.relu3_2.add_module(str(x), features[x])

        for x in range(14, 16):
            self.relu3_3.add_module(str(x), features[x])

        for x in range(16, 18):
            self.relu3_4.add_module(str(x), features[x])

        for x in range(18, 21):
            self.relu4_1.add_module(str(x), features[x])

        for x in range(21, 23):
            self.relu4_2.add_module(str(x), features[x])

        for x in range(23, 25):
            self.relu4_3.add_module(str(x), features[x])

        for x in range(25, 27):
            self.relu4_4.add_module(str(x), features[x])

        for x in range(27, 30):
            self.relu5_1.add_module(str(x), features[x])

        for x in range(30, 32):
            self.relu5_2.add_module(str(x), features[x])

        for x in range(32, 34):
            self.relu5_3.add_module(str(x), features[x])

        for x in range(34, 36):
            self.relu5_4.add_module(str(x), features[x])

        # don't need the gradients, just want the features
        for param in self.parameters():
            param.requires_grad = False

    def forward(self, x):
        relu1_1 = self.relu1_1(x)
        relu1_2 = self.relu1_2(relu1_1)

        relu2_1 = self.relu2_1(relu1_2)
        relu2_2 = self.relu2_2(relu2_1)

        relu3_1 = self.relu3_1(relu2_2)
        relu3_2 = self.relu3_2(relu3_1)
        relu3_3 = self.relu3_3(relu3_2)
        relu3_4 = self.relu3_4(relu3_3)

        relu4_1 = self.relu4_1(relu3_4)
        relu4_2 = self.relu4_2(relu4_1)
        relu4_3 = self.relu4_3(relu4_2)
        relu4_4 = self.relu4_4(relu4_3)

        relu5_1 = self.relu5_1(relu4_4)
        relu5_2 = self.relu5_2(relu5_1)
        relu5_3 = self.relu5_3(relu5_2)
        relu5_4 = self.relu5_4(relu5_3)

        out = {
            'relu1_1': relu1_1,
            'relu1_2': relu1_2,

            'relu2_1': relu2_1,
            'relu2_2': relu2_2,

            'relu3_1': relu3_1,
            'relu3_2': relu3_2,
            'relu3_3': relu3_3,
            'relu3_4': relu3_4,

            'relu4_1': relu4_1,
            'relu4_2': relu4_2,
            'relu4_3': relu4_3,
            'relu4_4': relu4_4,

            'relu5_1': relu5_1,
            'relu5_2': relu5_2,
            'relu5_3': relu5_3,
            'relu5_4': relu5_4,
        }
        return out


# Some losses related to optical flows
# From Unflow: https://github.com/simonmeister/UnFlow
def fbLoss(forward_flow, backward_flow, forward_gt_flow, backward_gt_flow, fb_loss_weight, image_warp_loss_weight=0,
           occ_weight=0, beta=255, first_image=None, second_image=None):
    """
    calculate the forward-backward consistency loss and the related image warp loss
    Args:
        forward_flow: torch tensor, with shape [b, c, h, w]
        backward_flow: torch tensor, with shape [b, c, h, w]
        forward_gt_flow: the ground truth of the forward flow (used for occlusion calculation)
        backward_gt_flow: the ground truth of the backward flow (used for occlusion calculation)
        fb_loss_weight: loss weight for forward-backward consistency check between two frames
        image_warp_loss_weight: loss weight for image warping
        occ_weight: loss weight for occlusion area (serve as a punishment for image warp loss)
        beta: 255 by default, according to the original loss codes in unflow
        first_image: the previous image (extraction for the optical flows)
        second_image: the later image (extraction for the optical flows)
        Note: forward and backward flow should be extracted from the same image pair
    Returns: forward backward consistency loss between forward and backward flow

    """
    mask_fw = create_outgoing_mask(forward_flow).float()
    mask_bw = create_outgoing_mask(backward_flow).float()

    # forward warp backward flow and backward forward flow to calculate the cycle consistency
    forward_flow_warped = image_warp(forward_flow, backward_gt_flow)
    forward_flow_warped_gt = image_warp(forward_gt_flow, backward_gt_flow)
    backward_flow_warped = image_warp(backward_flow, forward_gt_flow)
    backward_flow_warped_gt = image_warp(backward_gt_flow, forward_gt_flow)
    flow_diff_fw = backward_flow_warped + forward_flow
    flow_diff_fw_gt = backward_flow_warped_gt + forward_gt_flow
    flow_diff_bw = backward_flow + forward_flow_warped
    flow_diff_bw_gt = backward_gt_flow + forward_flow_warped_gt

    # occlusion calculation
    mag_sq_fw = length_sq(forward_gt_flow) + length_sq(backward_flow_warped_gt)
    mag_sq_bw = length_sq(backward_gt_flow) + length_sq(forward_flow_warped_gt)
    occ_thresh_fw = 0.01 * mag_sq_fw + 0.5
    occ_thresh_bw = 0.01 * mag_sq_bw + 0.5

    fb_occ_fw = (length_sq(flow_diff_fw_gt) > occ_thresh_fw).float()
    fb_occ_bw = (length_sq(flow_diff_bw_gt) > occ_thresh_bw).float()

    mask_fw *= (1 - fb_occ_fw)
    mask_bw *= (1 - fb_occ_bw)

    occ_fw = 1 - mask_fw
    occ_bw = 1 - mask_bw

    if image_warp_loss_weight != 0:
        # warp images
        second_image_warped = image_warp(second_image, forward_flow)  # frame 2 -> 1
        first_image_warped = image_warp(first_image, backward_flow)  # frame 1 -> 2
        im_diff_fw = first_image - second_image_warped
        im_diff_bw = second_image - first_image_warped
        # calculate the image warp loss based on the occlusion regions calculated by forward and backward flows (gt)
        occ_loss = occ_weight * (charbonnier_loss(occ_fw) + charbonnier_loss(occ_bw))
        image_warp_loss = image_warp_loss_weight * (
                charbonnier_loss(im_diff_fw, mask_fw, beta=beta) + charbonnier_loss(im_diff_bw, mask_bw,
                                                                                    beta=beta)) + occ_loss
    else:
        image_warp_loss = 0
    fb_loss = fb_loss_weight * (charbonnier_loss(flow_diff_fw, mask_fw) + charbonnier_loss(flow_diff_bw, mask_bw))
    return fb_loss + image_warp_loss


def length_sq(x):
    return torch.sum(torch.square(x), 1, keepdim=True)


def smoothness_loss(flow, cmask):
    delta_u, delta_v, mask = smoothness_deltas(flow)
    loss_u = charbonnier_loss(delta_u, cmask)
    loss_v = charbonnier_loss(delta_v, cmask)
    return loss_u + loss_v


def smoothness_deltas(flow):
    """
    flow: [b, c, h, w]
    """
    mask_x = create_mask(flow, [[0, 0], [0, 1]])
    mask_y = create_mask(flow, [[0, 1], [0, 0]])
    mask = torch.cat((mask_x, mask_y), dim=1)
    mask = mask.to(flow.device)
    filter_x = torch.tensor([[0, 0, 0.], [0, 1, -1], [0, 0, 0]])
    filter_y = torch.tensor([[0, 0, 0.], [0, 1, 0], [0, -1, 0]])
    weights = torch.ones([2, 1, 3, 3])
    weights[0, 0] = filter_x
    weights[1, 0] = filter_y
    weights = weights.to(flow.device)

    flow_u, flow_v = torch.split(flow, split_size_or_sections=1, dim=1)
    delta_u = F.conv2d(flow_u, weights, stride=1, padding=1)
    delta_v = F.conv2d(flow_v, weights, stride=1, padding=1)
    return delta_u, delta_v, mask


def second_order_loss(flow, cmask):
    delta_u, delta_v, mask = second_order_deltas(flow)
    loss_u = charbonnier_loss(delta_u, cmask)
    loss_v = charbonnier_loss(delta_v, cmask)
    return loss_u + loss_v


def charbonnier_loss(x, mask=None, truncate=None, alpha=0.45, beta=1.0, epsilon=0.001):
    """
    Compute the generalized charbonnier loss of the difference tensor x
    All positions where mask == 0 are not taken into account
    x: a tensor of shape [b, c, h, w]
    mask: a mask of shape [b, mc, h, w], where mask channels must be either 1 or the same as
    the number of channels of x. Entries should be 0 or 1
    return: loss
    """
    b, c, h, w = x.shape
    norm = b * c * h * w
    error = torch.pow(torch.square(x * beta) + torch.square(torch.tensor(epsilon)), alpha)
    if mask is not None:
        error = mask * error
    if truncate is not None:
        error = torch.min(error, truncate)
    return torch.sum(error) / norm


def second_order_deltas(flow):
    """
    consider the single flow first
    flow shape: [b, c, h, w]
    """
    # create mask
    mask_x = create_mask(flow, [[0, 0], [1, 1]])
    mask_y = create_mask(flow, [[1, 1], [0, 0]])
    mask_diag = create_mask(flow, [[1, 1], [1, 1]])
    mask = torch.cat((mask_x, mask_y, mask_diag, mask_diag), dim=1)
    mask = mask.to(flow.device)

    filter_x = torch.tensor([[0, 0, 0.], [1, -2, 1], [0, 0, 0]])
    filter_y = torch.tensor([[0, 1, 0.], [0, -2, 0], [0, 1, 0]])
    filter_diag1 = torch.tensor([[1, 0, 0.], [0, -2, 0], [0, 0, 1]])
    filter_diag2 = torch.tensor([[0, 0, 1.], [0, -2, 0], [1, 0, 0]])
    weights = torch.ones([4, 1, 3, 3])
    weights[0] = filter_x
    weights[1] = filter_y
    weights[2] = filter_diag1
    weights[3] = filter_diag2
    weights = weights.to(flow.device)

    # split the flow into flow_u and flow_v, conv them with the weights
    flow_u, flow_v = torch.split(flow, split_size_or_sections=1, dim=1)
    delta_u = F.conv2d(flow_u, weights, stride=1, padding=1)
    delta_v = F.conv2d(flow_v, weights, stride=1, padding=1)
    return delta_u, delta_v, mask


def create_mask(tensor, paddings):
    """
    tensor shape: [b, c, h, w]
    paddings: [2 x 2] shape list, the first row indicates up and down paddings
    the second row indicates left and right paddings
    |            |
    |       x    |
    |     x * x  |
    |       x    |
    |            |
    """
    shape = tensor.shape
    inner_height = shape[2] - (paddings[0][0] + paddings[0][1])
    inner_width = shape[3] - (paddings[1][0] + paddings[1][1])
    inner = torch.ones([inner_height, inner_width])
    torch_paddings = [paddings[1][0], paddings[1][1], paddings[0][0], paddings[0][1]]  # left, right, up and down
    mask2d = F.pad(inner, pad=torch_paddings)
    mask3d = mask2d.unsqueeze(0).repeat(shape[0], 1, 1)
    mask4d = mask3d.unsqueeze(1)
    return mask4d.detach()


def create_outgoing_mask(flow):
    """
    Computes a mask that is zero at all positions where the flow would carry a pixel over the image boundary
    For such pixels, it's invalid to calculate the flow losses
    Args:
        flow: torch tensor: with shape [b, 2, h, w]

    Returns: a mask, 1 indicates in-boundary pixels, with shape [b, 1, h, w]

    """
    b, c, h, w = flow.shape

    grid_x = torch.reshape(torch.arange(0, w), [1, 1, w])
    grid_x = grid_x.repeat(b, h, 1).float()
    grid_y = torch.reshape(torch.arange(0, h), [1, h, 1])
    grid_y = grid_y.repeat(b, 1, w).float()

    grid_x = grid_x.to(flow.device)
    grid_y = grid_y.to(flow.device)

    flow_u, flow_v = torch.split(flow, split_size_or_sections=1, dim=1)  # [b, h, w]
    pos_x = grid_x + flow_u
    pos_y = grid_y + flow_v
    inside_x = torch.logical_and(pos_x <= w - 1, pos_x >= 0)
    inside_y = torch.logical_and(pos_y <= h - 1, pos_y >= 0)
    inside = torch.logical_and(inside_x, inside_y)
    if len(inside.shape) == 3:
        inside = inside.unsqueeze(1)
    return inside