File size: 11,960 Bytes
d4b77ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
# --------------------------------------------------------
# SiamMask
# Licensed under The MIT License
# Written by Qiang Wang (wangqiang2015 at ia.ac.cn)
# --------------------------------------------------------
import argparse
import logging
import os
import cv2
import shutil
import time
import json
import math
import torch
from torch.utils.data import DataLoader

from utils.log_helper import init_log, print_speed, add_file_handler, Dummy
from utils.load_helper import load_pretrain, restore_from
from utils.average_meter_helper import AverageMeter

from datasets.siam_mask_dataset import DataSets

from utils.lr_helper import build_lr_scheduler
from tensorboardX import SummaryWriter

from utils.config_helper import load_config
from torch.utils.collect_env import get_pretty_env_info

torch.backends.cudnn.benchmark = True

parser = argparse.ArgumentParser(description='PyTorch Tracking SiamMask Training')

parser.add_argument('-j', '--workers', default=16, type=int, metavar='N',
                    help='number of data loading workers (default: 16)')
parser.add_argument('--epochs', default=50, type=int, metavar='N',
                    help='number of total epochs to run')
parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
                    help='manual epoch number (useful on restarts)')
parser.add_argument('-b', '--batch', default=64, type=int,
                    metavar='N', help='mini-batch size (default: 64)')
parser.add_argument('--lr', '--learning-rate', default=0.001, type=float,
                    metavar='LR', help='initial learning rate')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
                    help='momentum')
parser.add_argument('--weight-decay', '--wd', default=1e-4, type=float,
                    metavar='W', help='weight decay (default: 1e-4)')
parser.add_argument('--clip', default=10.0, type=float,
                    help='gradient clip value')
parser.add_argument('--print-freq', '-p', default=10, type=int,
                    metavar='N', help='print frequency (default: 10)')
parser.add_argument('--resume', default='', type=str, metavar='PATH',
                    help='path to latest checkpoint (default: none)')
parser.add_argument('--pretrained', dest='pretrained', default='',
                    help='use pre-trained model')
parser.add_argument('--config', dest='config', required=True,
                    help='hyperparameter of SiamMask in json format')
parser.add_argument('--arch', dest='arch', default='', choices=['Custom',],
                    help='architecture of pretrained model')
parser.add_argument('-l', '--log', default="log.txt", type=str,
                    help='log file')
parser.add_argument('-s', '--save_dir', default='snapshot', type=str,
                    help='save dir')
parser.add_argument('--log-dir', default='board', help='TensorBoard log dir')


best_acc = 0.


def collect_env_info():
    env_str = get_pretty_env_info()
    env_str += "\n        OpenCV ({})".format(cv2.__version__)
    return env_str


def build_data_loader(cfg):
    logger = logging.getLogger('global')

    logger.info("build train dataset")  # train_dataset
    train_set = DataSets(cfg['train_datasets'], cfg['anchors'], args.epochs)
    train_set.shuffle()

    logger.info("build val dataset")  # val_dataset
    if not 'val_datasets' in cfg.keys():
        cfg['val_datasets'] = cfg['train_datasets']
    val_set = DataSets(cfg['val_datasets'], cfg['anchors'])
    val_set.shuffle()

    train_loader = DataLoader(train_set, batch_size=args.batch, num_workers=args.workers,
                              pin_memory=True, sampler=None)
    val_loader = DataLoader(val_set, batch_size=args.batch, num_workers=args.workers,
                            pin_memory=True, sampler=None)

    logger.info('build dataset done')
    return train_loader, val_loader


def build_opt_lr(model, cfg, args, epoch):
    backbone_feature = model.features.param_groups(cfg['lr']['start_lr'], cfg['lr']['feature_lr_mult'])
    if len(backbone_feature) == 0:
        trainable_params = model.rpn_model.param_groups(cfg['lr']['start_lr'], cfg['lr']['rpn_lr_mult'], 'mask')
    else:
        trainable_params = backbone_feature + \
                           model.rpn_model.param_groups(cfg['lr']['start_lr'], cfg['lr']['rpn_lr_mult']) + \
                           model.mask_model.param_groups(cfg['lr']['start_lr'], cfg['lr']['mask_lr_mult'])

    optimizer = torch.optim.SGD(trainable_params, args.lr,
                                momentum=args.momentum,
                                weight_decay=args.weight_decay)

    lr_scheduler = build_lr_scheduler(optimizer, cfg['lr'], epochs=args.epochs)

    lr_scheduler.step(epoch)

    return optimizer, lr_scheduler


def main():
    global args, best_acc, tb_writer, logger
    args = parser.parse_args()

    init_log('global', logging.INFO)

    if args.log != "":
        add_file_handler('global', args.log, logging.INFO)

    logger = logging.getLogger('global')
    logger.info("\n" + collect_env_info())
    logger.info(args)

    cfg = load_config(args)
    logger.info("config \n{}".format(json.dumps(cfg, indent=4)))

    if args.log_dir:
        tb_writer = SummaryWriter(args.log_dir)
    else:
        tb_writer = Dummy()

    # build dataset
    train_loader, val_loader = build_data_loader(cfg)

    if args.arch == 'Custom':
        from custom import Custom
        model = Custom(pretrain=True, anchors=cfg['anchors'])
    else:
        exit()
    logger.info(model)

    if args.pretrained:
        model = load_pretrain(model, args.pretrained)

    model = model.cuda()
    dist_model = torch.nn.DataParallel(model, list(range(torch.cuda.device_count()))).cuda()

    if args.resume and args.start_epoch != 0:
        model.features.unfix((args.start_epoch - 1) / args.epochs)

    optimizer, lr_scheduler = build_opt_lr(model, cfg, args, args.start_epoch)
    # optionally resume from a checkpoint
    if args.resume:
        assert os.path.isfile(args.resume), '{} is not a valid file'.format(args.resume)
        model, optimizer, args.start_epoch, best_acc, arch = restore_from(model, optimizer, args.resume)
        dist_model = torch.nn.DataParallel(model, list(range(torch.cuda.device_count()))).cuda()

    logger.info(lr_scheduler)

    logger.info('model prepare done')

    train(train_loader, dist_model, optimizer, lr_scheduler, args.start_epoch, cfg)


def train(train_loader, model, optimizer, lr_scheduler, epoch, cfg):
    global tb_index, best_acc, cur_lr, logger
    cur_lr = lr_scheduler.get_cur_lr()
    logger = logging.getLogger('global')
    avg = AverageMeter()
    model.train()
    model = model.cuda()
    end = time.time()

    def is_valid_number(x):
        return not(math.isnan(x) or math.isinf(x) or x > 1e4)

    num_per_epoch = len(train_loader.dataset) // args.epochs // args.batch
    start_epoch = epoch
    epoch = epoch
    for iter, input in enumerate(train_loader):

        if epoch != iter // num_per_epoch + start_epoch:  # next epoch
            epoch = iter // num_per_epoch + start_epoch

            if not os.path.exists(args.save_dir):  # makedir/save model
                os.makedirs(args.save_dir)

            save_checkpoint({
                    'epoch': epoch,
                    'arch': args.arch,
                    'state_dict': model.module.state_dict(),
                    'best_acc': best_acc,
                    'optimizer': optimizer.state_dict(),
                    'anchor_cfg': cfg['anchors']
                }, False,
                os.path.join(args.save_dir, 'checkpoint_e%d.pth' % (epoch)),
                os.path.join(args.save_dir, 'best.pth'))

            if epoch == args.epochs:
                return

            if model.module.features.unfix(epoch/args.epochs):
                logger.info('unfix part model.')
                optimizer, lr_scheduler = build_opt_lr(model.module, cfg, args, epoch)

            lr_scheduler.step(epoch)
            cur_lr = lr_scheduler.get_cur_lr()

            logger.info('epoch:{}'.format(epoch))

        tb_index = iter
        if iter % num_per_epoch == 0 and iter != 0:
            for idx, pg in enumerate(optimizer.param_groups):
                logger.info("epoch {} lr {}".format(epoch, pg['lr']))
                tb_writer.add_scalar('lr/group%d' % (idx+1), pg['lr'], tb_index)

        data_time = time.time() - end
        avg.update(data_time=data_time)
        x = {
            'cfg': cfg,
            'template': torch.autograd.Variable(input[0]).cuda(),
            'search': torch.autograd.Variable(input[1]).cuda(),
            'label_cls': torch.autograd.Variable(input[2]).cuda(),
            'label_loc': torch.autograd.Variable(input[3]).cuda(),
            'label_loc_weight': torch.autograd.Variable(input[4]).cuda(),
            'label_mask': torch.autograd.Variable(input[6]).cuda(),
            'label_mask_weight': torch.autograd.Variable(input[7]).cuda(),
        }

        outputs = model(x)

        rpn_cls_loss, rpn_loc_loss, rpn_mask_loss = torch.mean(outputs['losses'][0]), torch.mean(outputs['losses'][1]), torch.mean(outputs['losses'][2])
        mask_iou_mean, mask_iou_at_5, mask_iou_at_7 = torch.mean(outputs['accuracy'][0]), torch.mean(outputs['accuracy'][1]), torch.mean(outputs['accuracy'][2])

        cls_weight, reg_weight, mask_weight = cfg['loss']['weight']

        loss = rpn_cls_loss * cls_weight + rpn_loc_loss * reg_weight + rpn_mask_loss * mask_weight

        optimizer.zero_grad()
        loss.backward()

        if cfg['clip']['split']:
            torch.nn.utils.clip_grad_norm_(model.module.features.parameters(), cfg['clip']['feature'])
            torch.nn.utils.clip_grad_norm_(model.module.rpn_model.parameters(), cfg['clip']['rpn'])
            torch.nn.utils.clip_grad_norm_(model.module.mask_model.parameters(), cfg['clip']['mask'])
        else:
            torch.nn.utils.clip_grad_norm_(model.parameters(), args.clip)  # gradient clip

        if is_valid_number(loss.item()):
            optimizer.step()

        siammask_loss = loss.item()

        batch_time = time.time() - end

        avg.update(batch_time=batch_time, rpn_cls_loss=rpn_cls_loss, rpn_loc_loss=rpn_loc_loss,
                   rpn_mask_loss=rpn_mask_loss, siammask_loss=siammask_loss,
                   mask_iou_mean=mask_iou_mean, mask_iou_at_5=mask_iou_at_5, mask_iou_at_7=mask_iou_at_7)

        tb_writer.add_scalar('loss/cls', rpn_cls_loss, tb_index)
        tb_writer.add_scalar('loss/loc', rpn_loc_loss, tb_index)
        tb_writer.add_scalar('loss/mask', rpn_mask_loss, tb_index)
        tb_writer.add_scalar('mask/mIoU', mask_iou_mean, tb_index)
        tb_writer.add_scalar('mask/AP@.5', mask_iou_at_5, tb_index)
        tb_writer.add_scalar('mask/AP@.7', mask_iou_at_7, tb_index)
        end = time.time()

        if (iter + 1) % args.print_freq == 0:
            logger.info('Epoch: [{0}][{1}/{2}] lr: {lr:.6f}\t{batch_time:s}\t{data_time:s}'
                        '\t{rpn_cls_loss:s}\t{rpn_loc_loss:s}\t{rpn_mask_loss:s}\t{siammask_loss:s}'
                        '\t{mask_iou_mean:s}\t{mask_iou_at_5:s}\t{mask_iou_at_7:s}'.format(
                        epoch+1, (iter + 1) % num_per_epoch, num_per_epoch, lr=cur_lr, batch_time=avg.batch_time,
                        data_time=avg.data_time, rpn_cls_loss=avg.rpn_cls_loss, rpn_loc_loss=avg.rpn_loc_loss,
                        rpn_mask_loss=avg.rpn_mask_loss, siammask_loss=avg.siammask_loss, mask_iou_mean=avg.mask_iou_mean,
                        mask_iou_at_5=avg.mask_iou_at_5,mask_iou_at_7=avg.mask_iou_at_7))
            print_speed(iter + 1, avg.batch_time.avg, args.epochs * num_per_epoch)


def save_checkpoint(state, is_best, filename='checkpoint.pth', best_file='model_best.pth'):
    torch.save(state, filename)
    if is_best:
        shutil.copyfile(filename, best_file)


if __name__ == '__main__':
    main()