Spaces:
Sleeping
Sleeping
File size: 7,749 Bytes
d4b77ac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 |
import torch
import torch.nn as nn
from .BaseNetwork import BaseNetwork
class Model(nn.Module):
def __init__(self, config):
super(Model, self).__init__()
self.net = P3DNet(config['num_flows'], config['cnum'], config['in_channel'], config['PASSMASK'],
config['use_residual'],
config['resBlocks'], config['use_bias'], config['conv_type'], config['init_weights'])
def forward(self, flows, masks, edges=None):
ret = self.net(flows, masks, edges)
return ret
class P3DNet(BaseNetwork):
def __init__(self, num_flows, num_feats, in_channels, passmask, use_residual, res_blocks,
use_bias, conv_type, init_weights):
super().__init__(conv_type)
self.passmask = passmask
self.encoder2 = nn.Sequential(
nn.ReplicationPad3d((2, 2, 2, 2, 0, 0)),
P3DBlock(in_channels, num_feats, kernel_size=5, stride=1, padding=0, bias=use_bias, conv_type=conv_type,
norm=None, use_residual=0),
P3DBlock(num_feats, num_feats * 2, kernel_size=3, stride=2, padding=1, bias=use_bias, conv_type=conv_type,
norm=None, use_residual=0)
)
self.encoder4 = nn.Sequential(
P3DBlock(num_feats * 2, num_feats * 2, kernel_size=3, stride=1, padding=1, bias=use_bias,
conv_type=conv_type, norm=None, use_residual=use_residual),
P3DBlock(num_feats * 2, num_feats * 4, kernel_size=3, stride=2, padding=1, bias=use_bias,
conv_type=conv_type, norm=None, use_residual=0)
)
residual_blocks = []
self.resNums = res_blocks
base_residual_block = P3DBlock(num_feats * 4, num_feats * 4, kernel_size=3, stride=1, padding=1, bias=use_bias,
conv_type=conv_type,
norm=None, use_residual=1)
for _ in range(res_blocks):
residual_blocks.append(base_residual_block)
self.res_blocks = nn.Sequential(*residual_blocks)
self.condense2 = self.ConvBlock(num_feats * 2, num_feats * 2, kernel_size=(num_flows, 1, 1), stride=1,
padding=0,
bias=use_bias, norm=None)
self.condense4_pre = self.ConvBlock(num_feats * 4, num_feats * 4, kernel_size=(num_flows, 1, 1), stride=1,
padding=0,
bias=use_bias, norm=None)
self.condense4_post = self.ConvBlock(num_feats * 4, num_feats * 4, kernel_size=(num_flows, 1, 1), stride=1,
padding=0,
bias=use_bias, norm=None)
# dilation convolution to enlarge the receptive field
self.middle = nn.Sequential(
self.ConvBlock2d(num_feats * 4, num_feats * 4, kernel_size=3, stride=1, padding=8, bias=use_bias,
dilation=8, norm=None),
self.ConvBlock2d(num_feats * 4, num_feats * 4, kernel_size=3, stride=1, padding=4, bias=use_bias,
dilation=4, norm=None),
self.ConvBlock2d(num_feats * 4, num_feats * 4, kernel_size=3, stride=1, padding=2, bias=use_bias,
dilation=2, norm=None),
self.ConvBlock2d(num_feats * 4, num_feats * 4, kernel_size=3, stride=1, padding=1, bias=use_bias,
dilation=1, norm=None),
)
self.decoder2 = nn.Sequential(
self.DeconvBlock2d(num_feats * 8, num_feats * 2, kernel_size=3, stride=1, padding=1, bias=use_bias,
norm=None),
self.ConvBlock2d(num_feats * 2, num_feats * 2, kernel_size=3, stride=1, padding=1, bias=use_bias,
norm=None),
self.ConvBlock2d(num_feats * 2, num_feats * 2, kernel_size=3, stride=1, padding=1, bias=use_bias,
norm=None)
)
self.decoder = nn.Sequential(
self.DeconvBlock2d(num_feats * 4, num_feats, kernel_size=3, stride=1, padding=1, bias=use_bias,
norm=None),
self.ConvBlock2d(num_feats, num_feats // 2, kernel_size=3, stride=1, padding=1, bias=use_bias,
norm=None),
self.ConvBlock2d(num_feats // 2, 2, kernel_size=3, stride=1, padding=1, bias=use_bias,
norm=None, activation=None)
)
self.edgeDetector = EdgeDetection(conv_type)
if init_weights:
self.init_weights()
def forward(self, flows, masks, edges=None):
if self.passmask:
inputs = torch.cat((flows, masks), dim=1)
else:
inputs = flows
if edges is not None:
inputs = torch.cat((inputs, edges), dim=1)
e2 = self.encoder2(inputs)
c_e2Pre = self.condense2(e2).squeeze(2)
e4 = self.encoder4(e2)
c_e4Pre = self.condense4_pre(e4).squeeze(2)
if self.resNums > 0:
e4 = self.res_blocks(e4)
c_e4Post = self.condense4_post(e4).squeeze(2)
assert len(c_e4Post.shape) == 4, 'Wrong with the c_e4 shape: {}'.format(len(c_e4Post.shape))
c_e4_filled = self.middle(c_e4Post)
c_e4 = torch.cat((c_e4_filled, c_e4Pre), dim=1)
c_e2Post = self.decoder2(c_e4)
c_e2 = torch.cat((c_e2Post, c_e2Pre), dim=1)
output = self.decoder(c_e2)
edge = self.edgeDetector(output)
return output, edge
class P3DBlock(BaseNetwork):
def __init__(self, in_channels, out_channels, kernel_size, stride, padding, bias, conv_type, norm, use_residual):
super().__init__(conv_type)
self.conv1 = self.ConvBlock(in_channels, out_channels, kernel_size=(1, kernel_size, kernel_size),
stride=(1, stride, stride), padding=(0, padding, padding),
bias=bias, norm=norm)
self.conv2 = self.ConvBlock(out_channels, out_channels, kernel_size=(3, 1, 1), stride=1,
padding=(1, 0, 0), bias=bias, norm=norm)
self.use_residual = use_residual
def forward(self, feats):
feat1 = self.conv1(feats)
feat2 = self.conv2(feat1)
if self.use_residual:
output = feats + feat2
else:
output = feat2
return output
class EdgeDetection(BaseNetwork):
def __init__(self, conv_type, in_channels=2, out_channels=1, mid_channels=16):
super(EdgeDetection, self).__init__(conv_type)
self.projection = self.ConvBlock2d(in_channels=in_channels, out_channels=mid_channels, kernel_size=3, stride=1,
padding=1, norm=None)
self.mid_layer_1 = self.ConvBlock2d(in_channels=mid_channels, out_channels=mid_channels, kernel_size=3,
stride=1, padding=1, norm=None)
self.mid_layer_2 = self.ConvBlock2d(in_channels=mid_channels, out_channels=mid_channels, kernel_size=3,
stride=1, padding=1, activation=None, norm=None)
self.l_relu = nn.LeakyReLU()
self.out_layer = self.ConvBlock2d(in_channels=mid_channels, out_channels=out_channels, kernel_size=1,
activation=None, norm=None)
def forward(self, flow):
flow = self.projection(flow)
edge = self.mid_layer_1(flow)
edge = self.mid_layer_2(edge)
edge = self.l_relu(flow + edge)
edge = self.out_layer(edge)
edge = torch.sigmoid(edge)
return edge
|