Spaces:
Sleeping
Sleeping
File size: 8,584 Bytes
d4b77ac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 |
# --------------------------------------------------------
# SiamMask
# Licensed under The MIT License
# Written by Qiang Wang (wangqiang2015 at ia.ac.cn)
# --------------------------------------------------------
import argparse
import logging
import numpy as np
import cv2
from PIL import Image
from os import makedirs
from os.path import isfile, isdir, join
from utils.log_helper import init_log, add_file_handler
from utils.bbox_helper import cxy_wh_2_rect
from utils.load_helper import load_pretrain
from utils.benchmark_helper import load_dataset
from utils.average_meter_helper import IouMeter
import models as models
from tools.test import siamese_init, siamese_track
from utils.config_helper import load_config
thrs = np.arange(0.3, 0.81, 0.05)
model_zoo = sorted(name for name in models.__dict__
if not name.startswith("__")
and callable(models.__dict__[name]))
def parse_range(arg):
param = map(float, arg.split(','))
return np.arange(*param)
def parse_range_int(arg):
param = map(int, arg.split(','))
return np.arange(*param)
parser = argparse.ArgumentParser(description='Finetune parameters for SiamMask tracker on DAVIS')
parser.add_argument('--arch', dest='arch', default='SiamRPNA', choices=model_zoo + ['Custom'],
help='architecture of pretrained model')
parser.add_argument('--resume', default='', type=str, required=True,
metavar='PATH',help='path to latest checkpoint (default: none)')
parser.add_argument('--config', dest='config',help='hyperparameter of SiamMask in json format')
parser.add_argument('--mask', action='store_true', help='whether use mask output')
parser.add_argument('--refine', action='store_true', help='whether use mask refine output')
parser.add_argument('--dataset', default='DAVIS2016', type=str,
metavar='DATASET', help='dataset')
parser.add_argument('-l', '--log', default="log_tune_davis.txt", type=str,
help='log file')
parser.add_argument('--penalty-k', default='0.0,0.1,0.03', type=parse_range,
help='penalty_k range')
parser.add_argument('--lr', default='0.8,1.01,0.05', type=parse_range,
help='lr range')
parser.add_argument('--window-influence', default='0.3,0.5,0.04', type=parse_range,
help='window influence range')
parser.add_argument('--search-region', default='255,256,8', type=parse_range_int,
help='search region size')
parser.add_argument('-v', '--visualization', dest='visualization', action='store_true',
help='whether visualize result')
args = parser.parse_args()
def tune(param):
regions = [] # result and states[1 init / 2 lost / 0 skip]
# save result
benchmark_result_path = join('result', param['dataset'])
tracker_path = join(benchmark_result_path, (param['network_name'] + ('_refine' if args.refine else '') +
'_r{}'.format(param['hp']['instance_size']) +
'_penalty_k_{:.3f}'.format(param['hp']['penalty_k']) +
'_window_influence_{:.3f}'.format(param['hp']['window_influence']) +
'_lr_{:.3f}'.format(param['hp']['lr'])).replace('.', '_')) # no .
video_path = tracker_path
result_path = join(video_path, param['video'] + '.txt')
if isfile(result_path):
return
try:
if not isdir(video_path):
makedirs(video_path)
except OSError as err:
print(err)
with open(result_path, 'w') as f: # Occupation
f.write('Occ')
global ims, gt, annos, image_files, anno_files
if ims is None:
print(param['video'] + ' Only load image once and if needed')
ims = [cv2.imread(x) for x in image_files]
annos = [np.array(Image.open(x)) for x in anno_files]
iou = IouMeter(thrs, len(ims) - 2)
start_frame, end_frame, toc = 0, len(ims) - 1, 0
for f, (im, anno) in enumerate(zip(ims, annos)):
tic = cv2.getTickCount()
if f == start_frame: # init
target_pos = np.array([gt[f, 0]+gt[f, 2]/2, gt[f, 1]+gt[f, 3]/2])
target_sz = np.array([gt[f, 2], gt[f, 3]])
state = siamese_init(im, target_pos, target_sz, param['network'], param['hp']) # init tracker
location = cxy_wh_2_rect(state['target_pos'], state['target_sz'])
regions.append(gt[f])
elif f > start_frame: # tracking
state = siamese_track(state, im, args.mask, args.refine) # track
location = state['ploygon'].flatten()
mask = state['mask']
regions.append(location)
if start_frame < f < end_frame: iou.add(mask, anno)
toc += cv2.getTickCount() - tic
if args.visualization and f >= start_frame: # visualization (skip lost frame)
im_show = im.copy()
if f == 0: cv2.destroyAllWindows()
if len(gt[f]) == 8:
cv2.polylines(im_show, [np.array(gt[f], np.int).reshape((-1, 1, 2))], True, (0, 255, 0), 3)
else:
cv2.rectangle(im_show, (gt[f, 0], gt[f, 1]), (gt[f, 0] + gt[f, 2], gt[f, 1] + gt[f, 3]), (0, 255, 0), 3)
if len(location) == 8:
im_show[:,:,2] = mask*255 + (1-mask)*im_show[:,:,2]
cv2.polylines(im_show, [np.int0(location).reshape((-1, 1, 2))], True, (0, 255, 255), 3)
else:
location = [int(l) for l in location] # bad support for OPENCV
cv2.rectangle(im_show, (location[0], location[1]),
(location[0] + location[2], location[1] + location[3]), (0, 255, 255), 3)
cv2.putText(im_show, str(f), (40, 40), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 255), 2) # frame id
cv2.imshow(param['video'], im_show)
cv2.waitKey(1)
toc /= cv2.getTickFrequency()
iou_list = iou.value('mean')
print('Video: {:12s} Time: {:2.1f}s Speed: {:3.1f}fps IOU: {:.3f}'.format(param['video'], toc, f / toc, iou_list.max()))
with open(result_path, 'w') as f:
f.write(','.join(["%.5f" % i for i in iou_list]) + '\n')
return iou_list
def main():
init_log('global', logging.INFO)
if args.log != "":
add_file_handler('global', args.log, logging.INFO)
params = {'penalty_k': args.penalty_k,
'window_influence': args.window_influence,
'lr': args.lr,
'instance_size': args.search_region}
num_search = len(params['penalty_k']) * len(params['window_influence']) * \
len(params['lr']) * len(params['instance_size'])
print(params)
print(num_search)
cfg = load_config(args)
if args.arch == 'Custom':
from custom import Custom
model = Custom(anchors=cfg['anchors'])
else:
model = models.__dict__[args.arch](anchors=cfg['anchors'])
if args.resume:
assert isfile(args.resume), '{} is not a valid file'.format(args.resume)
model = load_pretrain(model, args.resume)
model.eval()
model = model.cuda()
default_hp = cfg.get('hp', {})
p = dict()
p['network'] = model
p['network_name'] = args.arch+'_mask_'+args.resume.split('/')[-1].split('.')[0]
p['dataset'] = args.dataset
global ims, gt, annos, image_files, anno_files
dataset_info = load_dataset(args.dataset)
videos = list(dataset_info.keys())
np.random.shuffle(videos)
for video in videos:
print(video)
p['video'] = video
ims = None
annos = None
image_files = dataset_info[video]['image_files']
anno_files = dataset_info[video]['anno_files']
gt = dataset_info[video]['gt']
np.random.shuffle(params['penalty_k'])
np.random.shuffle(params['window_influence'])
np.random.shuffle(params['lr'])
for penalty_k in params['penalty_k']:
for window_influence in params['window_influence']:
for lr in params['lr']:
for instance_size in params['instance_size']:
p['hp'] = default_hp.copy()
p['hp'].update({'penalty_k':penalty_k,
'window_influence':window_influence,
'lr':lr,
'instance_size': instance_size,
})
tune(p)
if __name__ == '__main__':
main()
|