File size: 5,918 Bytes
d4b77ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
# --------------------------------------------------------
# SiamMask
# Licensed under The MIT License
# Written by Qiang Wang (wangqiang2015 at ia.ac.cn)
# --------------------------------------------------------
from pycocotools.coco import COCO
import cv2
import numpy as np
from os.path import join, isdir
from os import mkdir, makedirs
from concurrent import futures
import sys
import time
import argparse

parser = argparse.ArgumentParser(description='COCO Parallel Preprocessing for SiamMask')
parser.add_argument('--exemplar_size', type=int, default=127, help='size of exemplar')
parser.add_argument('--context_amount', type=float, default=0.5, help='context amount')
parser.add_argument('--search_size', type=int, default=511, help='size of cropped search region')
parser.add_argument('--enable_mask', action='store_true', help='whether crop mask')
parser.add_argument('--num_threads', type=int, default=24, help='number of threads')
args = parser.parse_args()


# Print iterations progress (thanks StackOverflow)
def printProgress(iteration, total, prefix='', suffix='', decimals=1, barLength=100):
    """
    Call in a loop to create terminal progress bar
    @params:
        iteration   - Required  : current iteration (Int)
        total       - Required  : total iterations (Int)
        prefix      - Optional  : prefix string (Str)
        suffix      - Optional  : suffix string (Str)
        decimals    - Optional  : positive number of decimals in percent complete (Int)
        barLength   - Optional  : character length of bar (Int)
    """
    formatStr       = "{0:." + str(decimals) + "f}"
    percents        = formatStr.format(100 * (iteration / float(total)))
    filledLength    = int(round(barLength * iteration / float(total)))
    bar             = '' * filledLength + '-' * (barLength - filledLength)
    sys.stdout.write('\r%s |%s| %s%s %s' % (prefix, bar, percents, '%', suffix)),
    if iteration == total:
        sys.stdout.write('\x1b[2K\r')
    sys.stdout.flush()


def crop_hwc(image, bbox, out_sz, padding=(0, 0, 0)):
    a = (out_sz-1) / (bbox[2]-bbox[0])
    b = (out_sz-1) / (bbox[3]-bbox[1])
    c = -a * bbox[0]
    d = -b * bbox[1]
    mapping = np.array([[a, 0, c],
                        [0, b, d]]).astype(np.float)
    crop = cv2.warpAffine(image, mapping, (out_sz, out_sz),
                          borderMode=cv2.BORDER_CONSTANT, borderValue=padding)
    return crop


def pos_s_2_bbox(pos, s):
    return [pos[0]-s/2, pos[1]-s/2, pos[0]+s/2, pos[1]+s/2]


def crop_like_SiamFCx(image, bbox, exemplar_size=127, context_amount=0.5, search_size=255, padding=(0, 0, 0)):
    target_pos = [(bbox[2]+bbox[0])/2., (bbox[3]+bbox[1])/2.]
    target_size = [bbox[2]-bbox[0]+1, bbox[3]-bbox[1]+1]
    wc_z = target_size[1] + context_amount * sum(target_size)
    hc_z = target_size[0] + context_amount * sum(target_size)
    s_z = np.sqrt(wc_z * hc_z)
    scale_z = exemplar_size / s_z
    d_search = (search_size - exemplar_size) / 2
    pad = d_search / scale_z
    s_x = s_z + 2 * pad

    x = crop_hwc(image, pos_s_2_bbox(target_pos, s_x), search_size, padding)
    return x


def crop_img(img, anns, set_crop_base_path, set_img_base_path,
             exemplar_size=127, context_amount=0.5, search_size=511, enable_mask=True):
    frame_crop_base_path = join(set_crop_base_path, img['file_name'].split('/')[-1].split('.')[0])
    if not isdir(frame_crop_base_path): makedirs(frame_crop_base_path)

    im = cv2.imread('{}/{}'.format(set_img_base_path, img['file_name']))
    avg_chans = np.mean(im, axis=(0, 1))
    for track_id, ann in enumerate(anns):
        rect = ann['bbox']
        if rect[2] <= 0 or rect[3] <= 0:
            continue
        bbox = [rect[0], rect[1], rect[0]+rect[2]-1, rect[1]+rect[3]-1]

        x = crop_like_SiamFCx(im, bbox, exemplar_size=exemplar_size, context_amount=context_amount,
                              search_size=search_size, padding=avg_chans)
        cv2.imwrite(join(frame_crop_base_path, '{:06d}.{:02d}.x.jpg'.format(0, track_id)), x)

        if enable_mask:
            im_mask = coco.annToMask(ann).astype(np.float32)
            x = (crop_like_SiamFCx(im_mask, bbox, exemplar_size=exemplar_size, context_amount=context_amount,
                                   search_size=search_size) > 0.5).astype(np.uint8) * 255
            cv2.imwrite(join(frame_crop_base_path, '{:06d}.{:02d}.m.png'.format(0, track_id)), x)


def main(exemplar_size=127, context_amount=0.5, search_size=511, enable_mask=True, num_threads=24):
    global coco  # will used for generate mask
    data_dir = '.'
    crop_path = './crop{:d}'.format(search_size)
    if not isdir(crop_path): mkdir(crop_path)

    for data_subset in ['val2017', 'train2017']:
        set_crop_base_path = join(crop_path, data_subset)
        set_img_base_path = join(data_dir, data_subset)

        anno_file = '{}/annotations/instances_{}.json'.format(data_dir, data_subset)
        coco = COCO(anno_file)
        n_imgs = len(coco.imgs)
        with futures.ProcessPoolExecutor(max_workers=num_threads) as executor:
            fs = [executor.submit(crop_img, coco.loadImgs(id)[0],
                                  coco.loadAnns(coco.getAnnIds(imgIds=id, iscrowd=None)),
                                  set_crop_base_path, set_img_base_path,
                                  exemplar_size, context_amount, search_size,
                                  enable_mask) for id in coco.imgs]
            for i, f in enumerate(futures.as_completed(fs)):
                printProgress(i, n_imgs, prefix=data_subset, suffix='Done ', barLength=40)
    print('done')


if __name__ == '__main__':
    since = time.time()
    main(args.exemplar_size, args.context_amount, args.search_size, args.enable_mask, args.num_threads)
    time_elapsed = time.time() - since
    print('Total complete in {:.0f}m {:.0f}s'.format(
        time_elapsed // 60, time_elapsed % 60))