File size: 7,165 Bytes
d4b77ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import random
import pickle

import logging
import torch
import cv2
import os

from torch.utils.data.dataset import Dataset
import numpy as np
import cvbase
from .util.STTN_mask import create_random_shape_with_random_motion
import imageio
from .util.flow_utils import region_fill as rf

logger = logging.getLogger('base')


class VideoBasedDataset(Dataset):
    def __init__(self, opt, dataInfo):
        self.opt = opt
        self.sampleMethod = opt['sample']
        self.dataInfo = dataInfo
        self.height, self.width = self.opt['input_resolution']
        self.frame_path = dataInfo['frame_path']
        self.flow_path = dataInfo['flow_path']  # The path of the optical flows
        self.train_list = os.listdir(self.frame_path)
        self.name2length = self.dataInfo['name2len']
        with open(self.name2length, 'rb') as f:
            self.name2length = pickle.load(f)
        self.sequenceLen = self.opt['num_frames']
        self.flow2rgb = opt['flow2rgb']  # whether to change flow to rgb domain
        self.flow_direction = opt[
            'flow_direction']  # The direction must be in ['for', 'back', 'bi'], indicating forward, backward and bidirectional flows

    def __len__(self):
        return len(self.train_list)

    def __getitem__(self, idx):
        try:
            item = self.load_item(idx)
        except:
            print('Loading error: ' + self.train_list[idx])
            item = self.load_item(0)
        return item

    def frameSample(self, frameLen, sequenceLen):
        if self.sampleMethod == 'random':
            indices = [i for i in range(frameLen)]
            sampleIndices = random.sample(indices, sequenceLen)
        elif self.sampleMethod == 'seq':
            pivot = random.randint(0, sequenceLen - 1 - frameLen)
            sampleIndices = [i for i in range(pivot, pivot + frameLen)]
        else:
            raise ValueError('Cannot determine the sample method {}'.format(self.sampleMethod))
        return sampleIndices

    def load_item(self, idx):
        video = self.train_list[idx]
        frame_dir = os.path.join(self.frame_path, video)
        forward_flow_dir = os.path.join(self.flow_path, video, 'forward_flo')
        backward_flow_dir = os.path.join(self.flow_path, video, 'backward_flo')
        frameLen = self.name2length[video]
        flowLen = frameLen - 1
        assert frameLen > self.sequenceLen, 'Frame length {} is less than sequence length'.format(frameLen)
        sampledIndices = self.frameSample(frameLen, self.sequenceLen)

        # generate random masks for these sampled frames
        candidateMasks = create_random_shape_with_random_motion(frameLen, 0.9, 1.1, 1, 10)

        # read the frames and masks
        frames, masks, forward_flows, backward_flows = [], [], [], []
        for i in range(len(sampledIndices)):
            frame = self.read_frame(os.path.join(frame_dir, '{:05d}.jpg'.format(sampledIndices[i])), self.height,
                                    self.width)
            mask = self.read_mask(candidateMasks[sampledIndices[i]], self.height, self.width)
            frames.append(frame)
            masks.append(mask)
            if self.flow_direction == 'for':
                forward_flow = self.read_forward_flow(forward_flow_dir, sampledIndices[i], flowLen)
                forward_flow = self.diffusion_flow(forward_flow, mask)
                forward_flows.append(forward_flow)
            elif self.flow_direction == 'back':
                backward_flow = self.read_backward_flow(backward_flow_dir, sampledIndices[i])
                backward_flow = self.diffusion_flow(backward_flow, mask)
                backward_flows.append(backward_flow)
            elif self.flow_direction == 'bi':
                forward_flow = self.read_forward_flow(forward_flow_dir, sampledIndices[i], flowLen)
                forward_flow = self.diffusion_flow(forward_flow, mask)
                forward_flows.append(forward_flow)
                backward_flow = self.read_backward_flow(backward_flow_dir, sampledIndices[i])
                backward_flow = self.diffusion_flow(backward_flow, mask)
                backward_flows.append(backward_flow)
            else:
                raise ValueError('Unknown flow direction mode: {}'.format(self.flow_direction))
        inputs = {'frames': frames, 'masks': masks, 'forward_flo': forward_flows, 'backward_flo': backward_flows}
        inputs = self.to_tensor(inputs)
        inputs['frames'] = (inputs['frames'] / 255.) * 2 - 1
        return inputs

    def diffusion_flow(self, flow, mask):
        flow_filled = np.zeros(flow.shape)
        flow_filled[:, :, 0] = rf.regionfill(flow[:, :, 0] * (1 - mask), mask)
        flow_filled[:, :, 1] = rf.regionfill(flow[:, :, 1] * (1 - mask), mask)
        return flow_filled

    def read_frame(self, path, height, width):
        frame = imageio.imread(path)
        frame = cv2.resize(frame, (width, height), cv2.INTER_LINEAR)
        return frame

    def read_mask(self, mask, height, width):
        mask = np.array(mask)
        mask = mask / 255.
        raw_mask = (mask > 0.5).astype(np.uint8)
        raw_mask = cv2.resize(raw_mask, dsize=(width, height), interpolation=cv2.INTER_NEAREST)
        return raw_mask

    def read_forward_flow(self, forward_flow_dir, sampledIndex, flowLen):
        if sampledIndex >= flowLen:
            sampledIndex = flowLen - 1
        flow = cvbase.read_flow(os.path.join(forward_flow_dir, '{:05d}.flo'.format(sampledIndex)))
        height, width = flow.shape[:2]
        flow = cv2.resize(flow, (self.width, self.height), cv2.INTER_LINEAR)
        flow[:, :, 0] = flow[:, :, 0] / width * self.width
        flow[:, :, 1] = flow[:, :, 1] / height * self.height
        return flow

    def read_backward_flow(self, backward_flow_dir, sampledIndex):
        if sampledIndex == 0:
            sampledIndex = 0
        else:
            sampledIndex -= 1
        flow = cvbase.read_flow(os.path.join(backward_flow_dir, '{:05d}.flo'.format(sampledIndex)))
        height, width = flow.shape[:2]
        flow = cv2.resize(flow, (self.width, self.height), cv2.INTER_LINEAR)
        flow[:, :, 0] = flow[:, :, 0] / width * self.width
        flow[:, :, 1] = flow[:, :, 1] / height * self.height
        return flow

    def to_tensor(self, data_list):
        """

        Args:
            data_list: A list contains multiple numpy arrays

        Returns: The stacked tensor list

        """
        keys = list(data_list.keys())
        for key in keys:
            if data_list[key] is None or data_list[key] == []:
                data_list.pop(key)
            else:
                item = data_list[key]
                if not isinstance(item, list):
                    item = torch.from_numpy(np.transpose(item, (2, 0, 1))).float()  # [c, h, w]
                else:
                    item = np.stack(item, axis=0)
                    if len(item.shape) == 3:  # [t, h, w]
                        item = item[:, :, :, np.newaxis]
                    item = torch.from_numpy(np.transpose(item, (0, 3, 1, 2))).float()  # [t, c, h, w]
                data_list[key] = item
        return data_list