Spaces:
Sleeping
Sleeping
File size: 5,528 Bytes
9f54a3b 71ec4a8 9f54a3b 0e00146 b4026e6 bb763aa a9c7401 f689a87 71ec4a8 8092b5a 71ec4a8 f689a87 71ec4a8 f689a87 b4026e6 8f7d62b e897423 f689a87 8f7d62b 71ec4a8 b4026e6 f689a87 b4026e6 8f7d62b 71ec4a8 8092b5a 8f7d62b 8092b5a e13723a 8f7d62b b4026e6 f689a87 b4026e6 f689a87 b4026e6 bb763aa e897423 bb763aa f689a87 bb763aa 8f7d62b 71ec4a8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 |
import streamlit as st
import requests
import os
import json
import pandas as pd
import folium # For map visualizations, though we'll generate a static map
from streamlit_folium import folium_static
# Function to call the Together AI model
def call_ai_model(all_message):
url = "https://api.together.xyz/v1/chat/completions"
payload = {
"model": "NousResearch/Nous-Hermes-2-Yi-34B",
"temperature": 1.05,
"top_p": 0.9,
"top_k": 50,
"repetition_penalty": 1,
"n": 1,
"messages": [{"role": "user", "content": all_message}],
"stream_tokens": True,
}
TOGETHER_API_KEY = os.getenv('TOGETHER_API_KEY')
if TOGETHER_API_KEY is None:
raise ValueError("TOGETHER_API_KEY environment variable not set.")
headers = {
"accept": "application/json",
"content-type": "application/json",
"Authorization": f"Bearer {TOGETHER_API_KEY}",
}
response = requests.post(url, json=payload, headers=headers, stream=True)
response.raise_for_status() # Ensure HTTP request was successful
return response
# Streamlit app layout
st.title("Climate Impact on Sports Performance and Infrastructure")
st.write("Analyze and visualize the impact of climate conditions on sports performance and infrastructure.")
# Inputs for climate conditions
temperature = st.number_input("Temperature (°C):", min_value=-50, max_value=50, value=25)
humidity = st.number_input("Humidity (%):", min_value=0, max_value=100, value=50)
wind_speed = st.number_input("Wind Speed (km/h):", min_value=0.0, max_value=200.0, value=15.0)
uv_index = st.number_input("UV Index:", min_value=0, max_value=11, value=5)
air_quality_index = st.number_input("Air Quality Index:", min_value=0, max_value=500, value=100)
precipitation = st.number_input("Precipitation (mm):", min_value=0.0, max_value=500.0, value=10.0)
atmospheric_pressure = st.number_input("Atmospheric Pressure (hPa):", min_value=900, max_value=1100, value=1013)
# Geographic location
latitude = st.number_input("Latitude:", min_value=-90.0, max_value=90.0, value=0.0)
longitude = st.number_input("Longitude:", min_value=-180.0, max_value=180.0, value=0.0)
# Athlete-specific data
age = st.number_input("Athlete Age:", min_value=0, max_value=100, value=25)
sport = st.selectbox("Select Sport:", ["Running", "Cycling", "Swimming", "Football", "Basketball"])
performance_history = st.text_area("Athlete Performance History:")
# Infrastructure characteristics
facility_type = st.selectbox("Facility Type:", ["Stadium", "Gymnasium", "Outdoor Field"])
facility_age = st.number_input("Facility Age (years):", min_value=0, max_value=100, value=10)
materials_used = st.text_input("Materials Used in Construction:")
if st.button("Generate Prediction"):
all_message = (
f"Assess the impact on sports performance and infrastructure based on climate conditions: "
f"Temperature {temperature}°C, Humidity {humidity}%, Wind Speed {wind_speed} km/h, UV Index {uv_index}, "
f"Air Quality Index {air_quality_index}, Precipitation {precipitation} mm, Atmospheric Pressure {atmospheric_pressure} hPa. "
f"Location: Latitude {latitude}, Longitude {longitude}. "
f"Athlete (Age: {age}, Sport: {sport}), Facility (Type: {facility_type}, Age: {facility_age}, Materials: {materials_used})."
)
try:
with st.spinner("Generating response..."):
response = call_ai_model(all_message)
generated_text = ""
for line in response.iter_lines():
if line:
line_content = line.decode('utf-8')
if line_content.startswith("data: "):
line_content = line_content[6:] # Strip "data: " prefix
try:
json_data = json.loads(line_content)
if "choices" in json_data:
delta = json_data["choices"][0]["delta"]
if "content" in delta:
generated_text += delta["content"]
except json.JSONDecodeError:
continue
st.success("Response generated!")
# Prepare data for visualization
results_data = {
"Condition": ["Temperature", "Humidity", "Wind Speed", "UV Index", "Air Quality Index", "Precipitation", "Atmospheric Pressure"],
"Value": [temperature, humidity, wind_speed, uv_index, air_quality_index, precipitation, atmospheric_pressure]
}
results_df = pd.DataFrame(results_data)
# Display results in a table
st.subheader("Results Summary")
st.table(results_df)
# Display prediction
st.markdown("**Predicted Impact on Performance and Infrastructure:**")
st.markdown(generated_text.strip())
# Generate static map using Folium
map_center = [latitude, longitude]
sport_map = folium.Map(location=map_center, zoom_start=12)
folium.Marker(location=map_center, popup="User Location").add_to(sport_map)
st.subheader("Geographical Visualization")
folium_static(sport_map)
except ValueError as ve:
st.error(f"Configuration error: {ve}")
except requests.exceptions.RequestException as re:
st.error(f"Request error: {re}")
except Exception as e:
st.error(f"An unexpected error occurred: {e}")
|