Spaces:
Running
Running
File size: 9,998 Bytes
aa7155c 697bfac aa7155c 697bfac aa7155c 697bfac aa7155c 697bfac aa7155c 697bfac aa7155c 697bfac aa7155c 697bfac aa7155c 697bfac aa7155c 697bfac aa7155c 697bfac aa7155c 697bfac aa7155c 697bfac aa7155c 697bfac aa7155c 697bfac aa7155c 697bfac aa7155c 697bfac aa7155c 697bfac aa7155c 697bfac aa7155c 697bfac aa7155c 1bcac9b aa7155c 697bfac aa7155c 697bfac aa7155c 697bfac 9584133 aa7155c 9584133 5efdbe4 9584133 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 |
"""
app.py – Gradio portal for COMP5300 voice‑cloning study (Hugging Face Spaces)
-------------------------------------------------------------------------
• Consistent sentence list (prompts.txt). One prompt shown at a time.
• Volunteer enters Speaker‑ID, records, clicks **Submit & Next**.
• WAV saved locally in /persistent/raw/<speaker>/
• Metadata appended to /persistent/meta.csv → speaker_id,prompt_idx,prompt_text,path
• Tracks completed prompts and total recording duration in /persistent/progress.json.
• Resumes from the next incomplete prompt for a given Speaker-ID.
Tested on **Gradio** and **Python** in Hugging Face Spaces – May 2025.
Install deps:
pip install gradio soundfile numpy
Run locally (for testing):
python app.py --prompts prompts.txt
"""
from __future__ import annotations
import argparse
import csv
import datetime as dt
import io
from pathlib import Path
from typing import List, Tuple, Union
import os
import json
import gradio as gr
import numpy as np
import soundfile as sf
AudioLike = Union[Tuple[int, np.ndarray], str, dict]
# Define the root directory for persistent storage in Hugging Face Spaces
LOCAL_ROOT = Path("/persistent")
# Define the progress file path within persistent storage
PROGRESS_FILE = LOCAL_ROOT / "progress.json"
META_FILE = LOCAL_ROOT / "meta.csv"
RAW_AUDIO_DIR = LOCAL_ROOT / "raw"
# -----------------------------------------------------------------------------
# Helpers
# -----------------------------------------------------------------------------
def load_prompts(path: Path) -> List[str]:
"""Load non‑empty lines from prompts.txt."""
# Check if running in Hugging Face Space (a common indicator is the presence of a 'HOME' environment variable)
if os.environ.get("HOME") == "/home/user":
prompts_file_path = Path("./prompts.txt") # Path relative to the app.py file in the Space
else:
prompts_file_path = path # Use the provided path if running locally
if prompts_file_path.exists():
return [ln.strip() for ln in prompts_file_path.read_text(encoding="utf8").splitlines() if ln.strip()]
else:
raise FileNotFoundError(f"Prompts file not found at: {prompts_file_path}")
def audio_to_wav_bytes(audio: AudioLike) -> bytes:
"""Convert Gradio Audio return‑value to raw WAV bytes."""
if isinstance(audio, tuple) and len(audio) == 2:
sr, wav = audio # type: ignore
buf = io.BytesIO()
sf.write(buf, wav, sr, format="WAV")
return buf.getvalue()
if isinstance(audio, dict):
if "data" in audio and audio["data"]:
sr, wav = audio["data"] # type: ignore
buf = io.BytesIO()
sf.write(buf, wav, sr, format="WAV")
return buf.getvalue()
if "path" in audio and audio["path"]:
return Path(audio["path"]).read_bytes() # type: ignore
if isinstance(audio, str) and Path(audio).exists():
return Path(audio).read_bytes()
raise ValueError("Unrecognized audio format from Gradio component")
def load_progress(progress_file: Path) -> dict:
"""Load progress data from JSON file."""
if progress_file.exists():
try:
with progress_file.open("r") as f:
return json.load(f)
except json.JSONDecodeError:
print("Error decoding progress.json. Starting with an empty progress.")
return {}
else:
return {}
def save_progress(progress_file: Path, speaker_id: str, prompt_idx: int, audio_duration: float) -> None:
"""Save progress to a JSON file."""
progress = load_progress(progress_file)
if speaker_id not in progress:
progress[speaker_id] = {
"completed_prompts": [],
"total_duration_seconds": 0.0,
}
if prompt_idx not in progress[speaker_id]["completed_prompts"]:
progress[speaker_id]["completed_prompts"].append(prompt_idx)
progress[speaker_id]["total_duration_seconds"] += audio_duration
progress[speaker_id]["completed_prompts"] = sorted(list(set(progress[speaker_id]["completed_prompts"])))
with progress_file.open("w") as f:
json.dump(progress, f, indent=2)
def save_local(data: bytes, path: Path):
"""Save data to a local file."""
path.parent.mkdir(parents=True, exist_ok=True)
path.write_bytes(data)
# -----------------------------------------------------------------------------
# Callback
# -----------------------------------------------------------------------------
def record_and_save(speaker_id: str,
prompt_idx: int,
audio: AudioLike,
prompts: list[str]):
if not speaker_id.strip():
return gr.Warning("Please enter Speaker‑ID first."), prompts[prompt_idx], prompt_idx, "", ""
if audio is None:
return gr.Warning("Please record before submitting."), prompts[prompt_idx], prompt_idx, "", ""
try:
wav_bytes = audio_to_wav_bytes(audio)
except Exception as e:
return gr.Warning(f"Audio processing error: {e}"), prompts[prompt_idx], prompt_idx, "", ""
timestamp = dt.datetime.now().strftime("%Y%m%d-%H%M%S")
fname = f"{speaker_id}_{prompt_idx:03d}_{timestamp}.wav"
local_audio_path = RAW_AUDIO_DIR / speaker_id / fname
path_str = str(local_audio_path)
save_local(wav_bytes, local_audio_path)
META_FILE.parent.mkdir(parents=True, exist_ok=True)
with META_FILE.open("a", newline="", encoding="utf8") as f:
csv.writer(f).writerow([speaker_id, prompt_idx, prompts[prompt_idx], path_str])
try:
audio_info = sf.info(local_audio_path)
audio_duration = audio_info.duration
except Exception as e:
print(f"Error getting audio info: {e}")
audio_duration = 0.0
save_progress(PROGRESS_FILE, speaker_id, prompt_idx, audio_duration)
progress_data = load_progress(PROGRESS_FILE)
completed_count = len(progress_data.get(speaker_id, {}).get("completed_prompts", []))
total_duration = progress_data.get(speaker_id, {}).get("total_duration_seconds", 0.0)
completed_prompts = set(progress_data.get(speaker_id, {}).get("completed_prompts", []))
next_prompt_idx = -1
for i in range(len(prompts)):
if i not in completed_prompts:
next_prompt_idx = i
break
if next_prompt_idx == -1:
next_prompt_idx = 0
return f"✅ Saved to {path_str}", prompts[next_prompt_idx], next_prompt_idx, f"Completed: {completed_count}/{len(prompts)}", f"Total Duration: {total_duration:.2f} seconds"
def update_prompt_on_speaker_change(speaker_id: str, prompts: list[str]) -> Tuple[str, int]:
"""Load progress and determine the next prompt when the speaker ID changes."""
if not speaker_id.strip():
return prompts[0], 0
progress_data = load_progress(PROGRESS_FILE)
completed_prompts = set(progress_data.get(speaker_id, {}).get("completed_prompts", []))
next_prompt_idx = -1
for i in range(len(prompts)):
if i not in completed_prompts:
next_prompt_idx = i
break
if next_prompt_idx == -1:
next_prompt_idx = 0
return prompts[next_prompt_idx], next_prompt_idx
# -----------------------------------------------------------------------------
# UI builder
# -----------------------------------------------------------------------------
def build_ui(prompts: list[str]):
with gr.Blocks(title="COMP5300 Voice‑Recording Portal") as demo:
gr.Markdown("""## Speaking Phase\n### Record sentences for the voice‑cloning study\n1. Find a quiet space.\n2. Click the microphone, read the sentence (mistakes are alright as long as you are speaking naturally, click stop.\n3. Hit **Submit & Next**. Repeat until done.""")
gr.Markdown("""**Note:** This is a research study. Your recordings will be used to train a voice model.\nPlease enter your `Speaker-ID` before recording. Use PV username (e.g. Jane Doe = `jdoe`).""")
speaker = gr.Text(label="Speaker‑ID")
prompt_box = gr.Textbox(label="Sentence to read")
idx_state = gr.State(0)
progress_display = gr.Markdown(label="Progress")
duration_display = gr.Markdown(label="Total Duration")
mic = gr.Audio(sources=["microphone"], format="wav", label="🎙️ Record here")
status = gr.Markdown()
btn = gr.Button("Submit & Next ➡️")
speaker.change(fn=update_prompt_on_speaker_change,
inputs=[speaker, gr.State(prompts)],
outputs=[prompt_box, idx_state])
btn.click(record_and_save,
inputs=[speaker, idx_state, mic, gr.State(prompts)],
outputs=[status, prompt_box, idx_state, progress_display, duration_display])
return demo
# -----------------------------------------------------------------------------
# main
# -----------------------------------------------------------------------------
def main():
ap = argparse.ArgumentParser()
ap.add_argument("--prompts", type=Path, required=True, help="Text file with one sentence per line")
args = ap.parse_args()
prompts = load_prompts(args.prompts)
ui = build_ui(prompts)
ui.launch()
if __name__ == "__main__":
if os.environ.get("HOME") == "/home/user":
# Running in Hugging Face Space, use /data for persistent storage
LOCAL_ROOT = Path("/data")
PROGRESS_FILE = LOCAL_ROOT / "progress.json"
META_FILE = LOCAL_ROOT / "meta.csv"
RAW_AUDIO_DIR = LOCAL_ROOT / "raw"
# Ensure parent directories exist
RAW_AUDIO_DIR.mkdir(parents=True, exist_ok=True)
PROGRESS_FILE.parent.mkdir(parents=True, exist_ok=True)
META_FILE.parent.mkdir(parents=True, exist_ok=True)
prompts = load_prompts(Path("./prompts.txt"))
ui = build_ui(prompts)
ui.launch()
else:
# Running locally, use command-line arguments
main() |