File size: 10,681 Bytes
20076b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
from functools import partial
from itertools import chain
from typing import TYPE_CHECKING, Any, Callable, Dict, List, Literal, Tuple

from ..extras.constants import IGNORE_INDEX
from ..extras.logging import get_logger
from .utils import Role


if TYPE_CHECKING:
    from transformers import Seq2SeqTrainingArguments
    from transformers.tokenization_utils import PreTrainedTokenizer

    from ..hparams import DataArguments
    from .template import Template


logger = get_logger(__name__)


def preprocess_pretrain_dataset(
    examples: Dict[str, List[Any]], tokenizer: "PreTrainedTokenizer", data_args: "DataArguments"
) -> Dict[str, List[List[int]]]:
    # build grouped texts with format `X1 X2 X3 ...`
    text_examples = [examples["prompt"][i][0]["content"] for i in range(len(examples["prompt"]))]
    tokenized_examples = tokenizer(text_examples, add_special_tokens=False)
    for i in range(len(tokenized_examples["input_ids"])):
        tokenized_examples["input_ids"][i] += [tokenizer.eos_token_id]
        tokenized_examples["attention_mask"][i] += [1]

    concatenated_examples = {k: list(chain(*tokenized_examples[k])) for k in tokenized_examples.keys()}
    total_length = len(concatenated_examples[list(concatenated_examples.keys())[0]])
    block_size = data_args.cutoff_len
    # we drop the small remainder, and if the total_length < block_size, we exclude this batch
    total_length = (total_length // block_size) * block_size
    # split by chunks of cutoff_len
    result = {
        k: [t[i : i + block_size] for i in range(0, total_length, block_size)]
        for k, t in concatenated_examples.items()
    }
    return result


def preprocess_supervised_dataset(
    examples: Dict[str, List[Any]],
    tokenizer: "PreTrainedTokenizer",
    template: "Template",
    data_args: "DataArguments",
) -> Dict[str, List[List[int]]]:
    # build inputs with format `<bos> X Y <eos>` and labels with format `<ignore> ... <ignore> Y <eos>`
    # for multiturn examples, we only mask the prompt part in each prompt-response pair.
    model_inputs = {"input_ids": [], "attention_mask": [], "labels": []}

    for i in range(len(examples["prompt"])):
        if len(examples["prompt"][i]) % 2 != 1 or len(examples["response"][i]) != 1:
            continue

        messages = examples["prompt"][i] + examples["response"][i]
        input_ids, labels = [], []
        for turn_idx, (source_ids, target_ids) in enumerate(
            template.encode_multiturn(
                tokenizer, messages, examples["system"][i], examples["tools"][i], data_args.cutoff_len
            )
        ):
            if data_args.train_on_prompt:
                source_mask = source_ids
            elif turn_idx != 0 and template.efficient_eos:
                source_mask = [tokenizer.eos_token_id] + [IGNORE_INDEX] * (len(source_ids) - 1)
            else:
                source_mask = [IGNORE_INDEX] * len(source_ids)

            input_ids += source_ids + target_ids
            labels += source_mask + target_ids

        if template.efficient_eos:
            input_ids += [tokenizer.eos_token_id]
            labels += [tokenizer.eos_token_id]

        model_inputs["input_ids"].append(input_ids)
        model_inputs["attention_mask"].append([1] * len(input_ids))
        model_inputs["labels"].append(labels)

    return model_inputs


def preprocess_packed_supervised_dataset(
    examples: Dict[str, List[Any]],
    tokenizer: "PreTrainedTokenizer",
    template: "Template",
    data_args: "DataArguments",
) -> Dict[str, List[List[int]]]:
    # build inputs with format `<bos> X1 Y1 <eos> <bos> X2 Y2 <eos>`
    # and labels with format `<ignore> ... <ignore> Y1 <eos> <ignore> ... <ignore> Y2 <eos>`
    model_inputs = {"input_ids": [], "attention_mask": [], "labels": []}
    input_ids, labels = [], []
    for i in range(len(examples["prompt"])):
        if len(examples["prompt"][i]) % 2 != 1 or len(examples["response"][i]) != 1:
            continue

        messages = examples["prompt"][i] + examples["response"][i]
        for turn_idx, (source_ids, target_ids) in enumerate(
            template.encode_multiturn(tokenizer, messages, examples["system"][i], examples["tools"][i])
        ):
            if data_args.train_on_prompt:
                source_mask = source_ids
            elif turn_idx != 0 and template.efficient_eos:
                source_mask = [tokenizer.eos_token_id] + [IGNORE_INDEX] * (len(source_ids) - 1)
            else:
                source_mask = [IGNORE_INDEX] * len(source_ids)

            input_ids += source_ids + target_ids
            labels += source_mask + target_ids

    if template.efficient_eos:
        input_ids += [tokenizer.eos_token_id]
        labels += [tokenizer.eos_token_id]

    total_length = len(input_ids)
    block_size = data_args.cutoff_len
    # we drop the small remainder, and if the total_length < block_size, we exclude this batch
    total_length = (total_length // block_size) * block_size
    # split by chunks of cutoff_len
    for i in range(0, total_length, block_size):
        model_inputs["input_ids"].append(input_ids[i : i + block_size])
        model_inputs["attention_mask"].append([1] * block_size)
        model_inputs["labels"].append(labels[i : i + block_size])

    return model_inputs


def preprocess_unsupervised_dataset(
    examples: Dict[str, List[Any]],
    tokenizer: "PreTrainedTokenizer",
    template: "Template",
    data_args: "DataArguments",
) -> Dict[str, List[List[int]]]:
    # build inputs with format `<bos> X` and labels with format `Y <eos>`
    model_inputs = {"input_ids": [], "attention_mask": [], "labels": []}

    for i in range(len(examples["prompt"])):
        if len(examples["prompt"][i]) % 2 != 1:
            continue

        if len(examples["response"][i]) == 1:
            messages = examples["prompt"][i] + examples["response"][i]
        else:
            messages = examples["prompt"][i] + [{"role": Role.ASSISTANT, "content": ""}]

        input_ids, labels = template.encode_oneturn(
            tokenizer, messages, examples["system"][i], examples["tools"][i], data_args.cutoff_len
        )

        if template.efficient_eos:
            labels += [tokenizer.eos_token_id]

        model_inputs["input_ids"].append(input_ids)
        model_inputs["attention_mask"].append([1] * len(input_ids))
        model_inputs["labels"].append(labels)

    return model_inputs


def preprocess_pairwise_dataset(
    examples: Dict[str, List[Any]],
    tokenizer: "PreTrainedTokenizer",
    template: "Template",
    data_args: "DataArguments",
) -> Dict[str, List[List[int]]]:
    # build input pairs with format `<bos> X`, `Y1 <eos>` and `Y2 <eos>`
    model_inputs = {"prompt_ids": [], "chosen_ids": [], "rejected_ids": []}
    for i in range(len(examples["prompt"])):
        if len(examples["prompt"][i]) % 2 != 1 or len(examples["response"][i]) < 2:
            continue

        chosen_messages = examples["prompt"][i] + [examples["response"][i][0]]
        rejected_messages = examples["prompt"][i] + [examples["response"][i][1]]

        prompt_ids, chosen_ids = template.encode_oneturn(
            tokenizer, chosen_messages, examples["system"][i], examples["tools"][i], data_args.cutoff_len
        )
        _, rejected_ids = template.encode_oneturn(
            tokenizer, rejected_messages, examples["system"][i], examples["tools"][i], data_args.cutoff_len
        )

        if template.efficient_eos:
            chosen_ids += [tokenizer.eos_token_id]
            rejected_ids += [tokenizer.eos_token_id]

        model_inputs["prompt_ids"].append(prompt_ids)
        model_inputs["chosen_ids"].append(chosen_ids)
        model_inputs["rejected_ids"].append(rejected_ids)

    return model_inputs


def print_supervised_dataset_example(example: Dict[str, List[int]], tokenizer: "PreTrainedTokenizer") -> None:
    print("input_ids:\n{}".format(example["input_ids"]))
    print("inputs:\n{}".format(tokenizer.decode(example["input_ids"], skip_special_tokens=False)))
    print("label_ids:\n{}".format(example["labels"]))
    print(
        "labels:\n{}".format(
            tokenizer.decode(list(filter(lambda x: x != IGNORE_INDEX, example["labels"])), skip_special_tokens=False)
        )
    )


def print_pairwise_dataset_example(example: Dict[str, List[int]], tokenizer: "PreTrainedTokenizer") -> None:
    print("prompt_ids:\n{}".format(example["prompt_ids"]))
    print("prompt:\n{}".format(tokenizer.decode(example["prompt_ids"], skip_special_tokens=False)))
    print("chosen_ids:\n{}".format(example["chosen_ids"]))
    print("chosen:\n{}".format(tokenizer.decode(example["chosen_ids"], skip_special_tokens=False)))
    print("rejected_ids:\n{}".format(example["rejected_ids"]))
    print("rejected:\n{}".format(tokenizer.decode(example["rejected_ids"], skip_special_tokens=False)))


def print_unsupervised_dataset_example(example: Dict[str, List[int]], tokenizer: "PreTrainedTokenizer") -> None:
    print("input_ids:\n{}".format(example["input_ids"]))
    print("inputs:\n{}".format(tokenizer.decode(example["input_ids"], skip_special_tokens=False)))


def get_preprocess_and_print_func(
    tokenizer: "PreTrainedTokenizer",
    template: "Template",
    data_args: "DataArguments",
    training_args: "Seq2SeqTrainingArguments",
    stage: Literal["pt", "sft", "rm", "ppo"],
) -> Tuple[Callable, Callable]:
    if stage == "pt":
        preprocess_func = partial(preprocess_pretrain_dataset, tokenizer=tokenizer, data_args=data_args)
        print_function = partial(print_unsupervised_dataset_example, tokenizer=tokenizer)
    elif stage == "sft" and not training_args.predict_with_generate:
        if data_args.sft_packing:
            preprocess_func = partial(
                preprocess_packed_supervised_dataset, tokenizer=tokenizer, template=template, data_args=data_args
            )
        else:
            preprocess_func = partial(
                preprocess_supervised_dataset, tokenizer=tokenizer, template=template, data_args=data_args
            )

        print_function = partial(print_supervised_dataset_example, tokenizer=tokenizer)
    elif stage == "rm":
        preprocess_func = partial(
            preprocess_pairwise_dataset, tokenizer=tokenizer, template=template, data_args=data_args
        )
        print_function = partial(print_pairwise_dataset_example, tokenizer=tokenizer)
    else:
        preprocess_func = partial(
            preprocess_unsupervised_dataset, tokenizer=tokenizer, template=template, data_args=data_args
        )
        print_function = partial(print_unsupervised_dataset_example, tokenizer=tokenizer)

    return preprocess_func, print_function