Spaces:
Running
Running
File size: 108,588 Bytes
ed28876 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 |
# Gradio_Related.py
#########################################
# Gradio UI Functions Library
# This library is used to hold all UI-related functions for Gradio.
# I fucking hate Gradio.
#
#####
# Functions:
#
# download_audio_file(url, save_path)
# process_audio(
# process_audio_file(audio_url, audio_file, whisper_model="small.en", api_name=None, api_key=None)
#
#
#########################################
#
# Built-In Imports
from datetime import datetime
import json
import logging
import os.path
from pathlib import Path
import sqlite3
from typing import Dict, List, Tuple
import traceback
from functools import wraps
#
# Import 3rd-Party Libraries
import yt_dlp
import gradio as gr
#
# Local Imports
from App_Function_Libraries.Article_Summarization_Lib import scrape_and_summarize_multiple
from App_Function_Libraries.Audio_Files import process_audio_files, process_podcast
from App_Function_Libraries.Chunk_Lib import improved_chunking_process, get_chat_completion
from App_Function_Libraries.PDF_Ingestion_Lib import process_and_cleanup_pdf
from App_Function_Libraries.Local_LLM_Inference_Engine_Lib import local_llm_gui_function
from App_Function_Libraries.Local_Summarization_Lib import summarize_with_llama, summarize_with_kobold, \
summarize_with_oobabooga, summarize_with_tabbyapi, summarize_with_vllm, summarize_with_local_llm
from App_Function_Libraries.Summarization_General_Lib import summarize_with_openai, summarize_with_cohere, \
summarize_with_anthropic, summarize_with_groq, summarize_with_openrouter, summarize_with_deepseek, \
summarize_with_huggingface, perform_summarization, save_transcription_and_summary, \
perform_transcription, summarize_chunk
from App_Function_Libraries.SQLite_DB import update_media_content, list_prompts, search_and_display, db, DatabaseError, \
fetch_prompt_details, keywords_browser_interface, add_keyword, delete_keyword, \
export_keywords_to_csv, export_to_file, add_media_to_database, insert_prompt_to_db
from App_Function_Libraries.Utils import sanitize_filename, extract_text_from_segments, create_download_directory, \
convert_to_seconds, load_comprehensive_config
from App_Function_Libraries.Video_DL_Ingestion_Lib import parse_and_expand_urls, \
generate_timestamped_url, extract_metadata, download_video
#
#######################################################################################################################
# Function Definitions
#
whisper_models = ["small", "medium", "small.en", "medium.en", "medium", "large", "large-v1", "large-v2", "large-v3",
"distil-large-v2", "distil-medium.en", "distil-small.en"]
custom_prompt_input = None
server_mode = False
share_public = False
def load_preset_prompts():
return list_prompts()
def gradio_download_youtube_video(url):
"""Download video using yt-dlp with specified options."""
# Determine ffmpeg path based on the operating system.
ffmpeg_path = './Bin/ffmpeg.exe' if os.name == 'nt' else 'ffmpeg'
# Extract information about the video
with yt_dlp.YoutubeDL({'quiet': True}) as ydl:
info_dict = ydl.extract_info(url, download=False)
sanitized_title = sanitize_filename(info_dict['title'])
original_ext = info_dict['ext']
# Setup the final directory and filename
download_dir = Path(f"results/{sanitized_title}")
download_dir.mkdir(parents=True, exist_ok=True)
output_file_path = download_dir / f"{sanitized_title}.{original_ext}"
# Initialize yt-dlp with generic options and the output template
ydl_opts = {
'format': 'bestvideo+bestaudio/best',
'ffmpeg_location': ffmpeg_path,
'outtmpl': str(output_file_path),
'noplaylist': True, 'quiet': True
}
# Execute yt-dlp to download the video
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
ydl.download([url])
# Final check to ensure file exists
if not output_file_path.exists():
raise FileNotFoundError(f"Expected file was not found: {output_file_path}")
return str(output_file_path)
def format_transcription(content):
# Add extra space after periods for better readability
content = content.replace('.', '. ').replace('. ', '. ')
# Split the content into lines for multiline display
lines = content.split('. ')
# Join lines with HTML line break for better presentation in Markdown
formatted_content = "<br>".join(lines)
return formatted_content
def format_file_path(file_path, fallback_path=None):
if file_path and os.path.exists(file_path):
logging.debug(f"File exists: {file_path}")
return file_path
elif fallback_path and os.path.exists(fallback_path):
logging.debug(f"File does not exist: {file_path}. Returning fallback path: {fallback_path}")
return fallback_path
else:
logging.debug(f"File does not exist: {file_path}. No fallback path available.")
return None
def search_media(query, fields, keyword, page):
try:
results = search_and_display(query, fields, keyword, page)
return results
except Exception as e:
logger = logging.getLogger()
logger.error(f"Error searching media: {e}")
return str(e)
# Sample data
prompts_category_1 = [
"What are the key points discussed in the video?",
"Summarize the main arguments made by the speaker.",
"Describe the conclusions of the study presented."
]
prompts_category_2 = [
"How does the proposed solution address the problem?",
"What are the implications of the findings?",
"Can you explain the theory behind the observed phenomenon?"
]
all_prompts = prompts_category_1 + prompts_category_2
# Handle prompt selection
def handle_prompt_selection(prompt):
return f"You selected: {prompt}"
def display_details(media_id):
# Gradio Search Function-related stuff
if media_id:
details = display_item_details(media_id)
details_html = ""
for detail in details:
details_html += f"<h4>Prompt:</h4><p>{detail[0]}</p>"
details_html += f"<h4>Summary:</h4><p>{detail[1]}</p>"
details_html += f"<h4>Transcription:</h4><pre>{detail[2]}</pre><hr>"
return details_html
return "No details available."
def fetch_items_by_title_or_url(search_query: str, search_type: str):
try:
with db.get_connection() as conn:
cursor = conn.cursor()
if search_type == 'Title':
cursor.execute("SELECT id, title, url FROM Media WHERE title LIKE ?", (f'%{search_query}%',))
elif search_type == 'URL':
cursor.execute("SELECT id, title, url FROM Media WHERE url LIKE ?", (f'%{search_query}%',))
results = cursor.fetchall()
return results
except sqlite3.Error as e:
raise DatabaseError(f"Error fetching items by {search_type}: {e}")
def fetch_items_by_keyword(search_query: str):
try:
with db.get_connection() as conn:
cursor = conn.cursor()
cursor.execute("""
SELECT m.id, m.title, m.url
FROM Media m
JOIN MediaKeywords mk ON m.id = mk.media_id
JOIN Keywords k ON mk.keyword_id = k.id
WHERE k.keyword LIKE ?
""", (f'%{search_query}%',))
results = cursor.fetchall()
return results
except sqlite3.Error as e:
raise DatabaseError(f"Error fetching items by keyword: {e}")
def fetch_items_by_content(search_query: str):
try:
with db.get_connection() as conn:
cursor = conn.cursor()
cursor.execute("SELECT id, title, url FROM Media WHERE content LIKE ?", (f'%{search_query}%',))
results = cursor.fetchall()
return results
except sqlite3.Error as e:
raise DatabaseError(f"Error fetching items by content: {e}")
def fetch_item_details_single(media_id: int):
try:
with db.get_connection() as conn:
cursor = conn.cursor()
cursor.execute("""
SELECT prompt, summary
FROM MediaModifications
WHERE media_id = ?
ORDER BY modification_date DESC
LIMIT 1
""", (media_id,))
prompt_summary_result = cursor.fetchone()
cursor.execute("SELECT content FROM Media WHERE id = ?", (media_id,))
content_result = cursor.fetchone()
prompt = prompt_summary_result[0] if prompt_summary_result else ""
summary = prompt_summary_result[1] if prompt_summary_result else ""
content = content_result[0] if content_result else ""
return prompt, summary, content
except sqlite3.Error as e:
raise Exception(f"Error fetching item details: {e}")
def fetch_item_details(media_id: int):
try:
with db.get_connection() as conn:
cursor = conn.cursor()
cursor.execute("""
SELECT prompt, summary
FROM MediaModifications
WHERE media_id = ?
ORDER BY modification_date DESC
LIMIT 1
""", (media_id,))
prompt_summary_result = cursor.fetchone()
cursor.execute("SELECT content FROM Media WHERE id = ?", (media_id,))
content_result = cursor.fetchone()
prompt = prompt_summary_result[0] if prompt_summary_result else ""
summary = prompt_summary_result[1] if prompt_summary_result else ""
content = content_result[0] if content_result else ""
return content, prompt, summary
except sqlite3.Error as e:
logging.error(f"Error fetching item details: {e}")
return "", "", "" # Return empty strings if there's an error
def browse_items(search_query, search_type):
if search_type == 'Keyword':
results = fetch_items_by_keyword(search_query)
elif search_type == 'Content':
results = fetch_items_by_content(search_query)
else:
results = fetch_items_by_title_or_url(search_query, search_type)
return results
def display_item_details(media_id):
# Function to display item details
prompt_summary_results, content = fetch_item_details(media_id)
content_section = f"<h4>Transcription:</h4><pre>{content}</pre><hr>"
prompt_summary_section = ""
for prompt, summary in prompt_summary_results:
prompt_summary_section += f"<h4>Prompt:</h4><p>{prompt}</p>"
prompt_summary_section += f"<h4>Summary:</h4><p>{summary}</p><hr>"
return prompt_summary_section, content_section
def update_dropdown(search_query, search_type):
results = browse_items(search_query, search_type)
item_options = [f"{item[1]} ({item[2]})" for item in results]
new_item_mapping = {f"{item[1]} ({item[2]})": item[0] for item in results}
print(f"Debug - Update Dropdown - New Item Mapping: {new_item_mapping}")
return gr.update(choices=item_options), new_item_mapping
def get_media_id(selected_item, item_mapping):
return item_mapping.get(selected_item)
def update_detailed_view(item, item_mapping):
# Function to update the detailed view based on selected item
if item:
item_id = item_mapping.get(item)
if item_id:
content, prompt, summary = fetch_item_details(item_id)
if content or prompt or summary:
details_html = "<h4>Details:</h4>"
if prompt:
details_html += f"<h4>Prompt:</h4>{prompt}</p>"
if summary:
details_html += f"<h4>Summary:</h4>{summary}</p>"
# Format the transcription content for better readability
content_html = f"<h4>Transcription:</h4><div style='white-space: pre-wrap;'>{format_transcription(content)}</div>"
return details_html, content_html
else:
return "No details available.", "No details available."
else:
return "No item selected", "No item selected"
else:
return "No item selected", "No item selected"
def format_content(content):
# Format content using markdown
formatted_content = f"```\n{content}\n```"
return formatted_content
def update_prompt_dropdown():
prompt_names = list_prompts()
return gr.update(choices=prompt_names)
def display_prompt_details(selected_prompt):
if selected_prompt:
details = fetch_prompt_details(selected_prompt)
if details:
details_str = f"<h4>Details:</h4><p>{details[0]}</p>"
system_str = f"<h4>System:</h4><p>{details[1]}</p>"
user_str = f"<h4>User:</h4><p>{details[2]}</p>" if details[2] else ""
return details_str + system_str + user_str
return "No details available."
def display_search_results(query):
if not query.strip():
return "Please enter a search query."
results = search_prompts(query)
# Debugging: Print the results to the console to see what is being returned
print(f"Processed search results for query '{query}': {results}")
if results:
result_md = "## Search Results:\n"
for result in results:
# Debugging: Print each result to see its format
print(f"Result item: {result}")
if len(result) == 2:
name, details = result
result_md += f"**Title:** {name}\n\n**Description:** {details}\n\n---\n"
else:
result_md += "Error: Unexpected result format.\n\n---\n"
return result_md
return "No results found."
def search_media_database(query: str) -> List[Tuple[int, str, str]]:
return browse_items(query, 'Title')
def load_media_content(media_id: int) -> dict:
try:
print(f"Debug - Load Media Content - Media ID: {media_id}")
item_details = fetch_item_details(media_id)
print(f"Debug - Load Media Content - Item Details: {item_details}")
if isinstance(item_details, tuple) and len(item_details) == 3:
content, prompt, summary = item_details
else:
print(f"Debug - Load Media Content - Unexpected item_details format: {item_details}")
content, prompt, summary = "", "", ""
return {
"content": content or "No content available",
"prompt": prompt or "No prompt available",
"summary": summary or "No summary available"
}
except Exception as e:
print(f"Debug - Load Media Content - Error: {str(e)}")
return {"content": "", "prompt": "", "summary": ""}
def load_preset_prompts():
return list_prompts()
def chat(message, history, media_content, selected_parts, api_endpoint, api_key, prompt):
try:
print(f"Debug - Chat Function - Message: {message}")
print(f"Debug - Chat Function - Media Content: {media_content}")
print(f"Debug - Chat Function - Selected Parts: {selected_parts}")
print(f"Debug - Chat Function - API Endpoint: {api_endpoint}")
print(f"Debug - Chat Function - Prompt: {prompt}")
# Ensure selected_parts is a list
if not isinstance(selected_parts, (list, tuple)):
selected_parts = [selected_parts] if selected_parts else []
print(f"Debug - Chat Function - Selected Parts (after check): {selected_parts}")
# Combine the selected parts of the media content
combined_content = "\n\n".join([f"{part.capitalize()}: {media_content.get(part, '')}" for part in selected_parts if part in media_content])
print(f"Debug - Chat Function - Combined Content: {combined_content[:500]}...") # Print first 500 chars
# Prepare the input for the API
input_data = f"{combined_content}\n\nUser: {message}\nAI:"
print(f"Debug - Chat Function - Input Data: {input_data[:500]}...") # Print first 500 chars
# Use the existing API request code based on the selected endpoint
if api_endpoint.lower() == 'openai':
response = summarize_with_openai(api_key, input_data, prompt)
elif api_endpoint.lower() == "anthropic":
response = summarize_with_anthropic(api_key, input_data, prompt)
elif api_endpoint.lower() == "cohere":
response = summarize_with_cohere(api_key, input_data, prompt)
elif api_endpoint.lower() == "groq":
response = summarize_with_groq(api_key, input_data, prompt)
elif api_endpoint.lower() == "openrouter":
response = summarize_with_openrouter(api_key, input_data, prompt)
elif api_endpoint.lower() == "deepseek":
response = summarize_with_deepseek(api_key, input_data, prompt)
elif api_endpoint.lower() == "llama.cpp":
response = summarize_with_llama(input_data, prompt)
elif api_endpoint.lower() == "kobold":
response = summarize_with_kobold(input_data, api_key, prompt)
elif api_endpoint.lower() == "ooba":
response = summarize_with_oobabooga(input_data, api_key, prompt)
elif api_endpoint.lower() == "tabbyapi":
response = summarize_with_tabbyapi(input_data, prompt)
elif api_endpoint.lower() == "vllm":
response = summarize_with_vllm(input_data, prompt)
elif api_endpoint.lower() == "local-llm":
response = summarize_with_local_llm(input_data, prompt)
elif api_endpoint.lower() == "huggingface":
response = summarize_with_huggingface(api_key, input_data, prompt)
else:
raise ValueError(f"Unsupported API endpoint: {api_endpoint}")
return response
except Exception as e:
logging.error(f"Error in chat function: {str(e)}")
return f"An error occurred: {str(e)}"
def save_chat_history(history: List[List[str]], media_content: Dict[str, str], selected_parts: List[str],
api_endpoint: str, prompt: str):
"""
Save the chat history along with context information to a JSON file.
"""
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
filename = f"chat_history_{timestamp}.json"
chat_data = {
"timestamp": timestamp,
"history": history,
"context": {
"selected_media": {
part: media_content.get(part, "") for part in selected_parts
},
"api_endpoint": api_endpoint,
"prompt": prompt
}
}
json_data = json.dumps(chat_data, indent=2)
return filename, json_data
def error_handler(func):
@wraps(func)
def wrapper(*args, **kwargs):
try:
return func(*args, **kwargs)
except Exception as e:
error_message = f"Error in {func.__name__}: {str(e)}"
logging.error(f"{error_message}\n{traceback.format_exc()}")
return {"error": error_message, "details": traceback.format_exc()}
return wrapper
def create_chunking_inputs():
chunk_text_by_words_checkbox = gr.Checkbox(label="Chunk Text by Words", value=False, visible=True)
max_words_input = gr.Number(label="Max Words", value=300, precision=0, visible=True)
chunk_text_by_sentences_checkbox = gr.Checkbox(label="Chunk Text by Sentences", value=False, visible=True)
max_sentences_input = gr.Number(label="Max Sentences", value=10, precision=0, visible=True)
chunk_text_by_paragraphs_checkbox = gr.Checkbox(label="Chunk Text by Paragraphs", value=False, visible=True)
max_paragraphs_input = gr.Number(label="Max Paragraphs", value=5, precision=0, visible=True)
chunk_text_by_tokens_checkbox = gr.Checkbox(label="Chunk Text by Tokens", value=False, visible=True)
max_tokens_input = gr.Number(label="Max Tokens", value=1000, precision=0, visible=True)
gr_semantic_chunk_long_file = gr.Checkbox(label="Semantic Chunking by Sentence similarity", value=False, visible=True)
gr_semantic_chunk_long_file_size = gr.Number(label="Max Chunk Size", value=2000, visible=True)
gr_semantic_chunk_long_file_overlap = gr.Number(label="Max Chunk Overlap Size", value=100, visible=True)
return [chunk_text_by_words_checkbox, max_words_input, chunk_text_by_sentences_checkbox, max_sentences_input,
chunk_text_by_paragraphs_checkbox, max_paragraphs_input, chunk_text_by_tokens_checkbox, max_tokens_input]
def create_video_transcription_tab():
with gr.TabItem("Video Transcription + Summarization"):
gr.Markdown("# Transcribe & Summarize Videos from URLs")
with gr.Row():
gr.Markdown("""Follow this project at [tldw - GitHub](https://github.com/rmusser01/tldw)""")
with gr.Row():
with gr.Column():
url_input = gr.Textbox(label="URL(s) (Mandatory)",
placeholder="Enter video URLs here, one per line. Supports YouTube, Vimeo, and playlists.",
lines=5)
diarize_input = gr.Checkbox(label="Enable Speaker Diarization", value=False)
whisper_model_input = gr.Dropdown(choices=whisper_models, value="medium", label="Whisper Model")
custom_prompt_checkbox = gr.Checkbox(label="Use Custom Prompt", value=False, visible=True)
custom_prompt_input = gr.Textbox(label="Custom Prompt", placeholder="Enter custom prompt here", lines=3, visible=False)
custom_prompt_checkbox.change(
fn=lambda x: gr.update(visible=x),
inputs=[custom_prompt_checkbox],
outputs=[custom_prompt_input]
)
api_name_input = gr.Dropdown(
choices=[None, "Local-LLM", "OpenAI", "Anthropic", "Cohere", "Groq", "DeepSeek", "OpenRouter",
"Llama.cpp", "Kobold", "Ooba", "Tabbyapi", "VLLM", "HuggingFace"],
value=None, label="API Name (Mandatory)")
api_key_input = gr.Textbox(label="API Key (Mandatory)", placeholder="Enter your API key here")
keywords_input = gr.Textbox(label="Keywords", placeholder="Enter keywords here (comma-separated)",
value="default,no_keyword_set")
batch_size_input = gr.Slider(minimum=1, maximum=10, value=1, step=1,
label="Batch Size (Number of videos to process simultaneously)")
timestamp_option = gr.Radio(choices=["Include Timestamps", "Exclude Timestamps"],
value="Include Timestamps", label="Timestamp Option")
keep_original_video = gr.Checkbox(label="Keep Original Video", value=False)
# First, create a checkbox to toggle the chunking options
chunking_options_checkbox = gr.Checkbox(label="Show Chunking Options", value=False)
summarize_recursively = gr.Checkbox(label="Enable Recursive Summarization", value=False)
use_cookies_input = gr.Checkbox(label="Use cookies for authenticated download", value=False)
use_time_input = gr.Checkbox(label="Use Start and End Time", value=False)
with gr.Row(visible=False) as time_input_box:
gr.Markdown("### Start and End time")
with gr.Column():
start_time_input = gr.Textbox(label="Start Time (Optional)",
placeholder="e.g., 1:30 or 90 (in seconds)")
end_time_input = gr.Textbox(label="End Time (Optional)", placeholder="e.g., 5:45 or 345 (in seconds)")
use_time_input.change(
fn=lambda x: gr.update(visible=x),
inputs=[use_time_input],
outputs=[time_input_box]
)
cookies_input = gr.Textbox(
label="User Session Cookies",
placeholder="Paste your cookies here (JSON format)",
lines=3,
visible=False
)
use_cookies_input.change(
fn=lambda x: gr.update(visible=x),
inputs=[use_cookies_input],
outputs=[cookies_input]
)
# Then, create a Box to group the chunking options
with gr.Row(visible=False) as chunking_options_box:
gr.Markdown("### Chunking Options")
with gr.Column():
chunk_method = gr.Dropdown(choices=['words', 'sentences', 'paragraphs', 'tokens'],
label="Chunking Method")
max_chunk_size = gr.Slider(minimum=100, maximum=1000, value=300, step=50, label="Max Chunk Size")
chunk_overlap = gr.Slider(minimum=0, maximum=100, value=0, step=10, label="Chunk Overlap")
use_adaptive_chunking = gr.Checkbox(label="Use Adaptive Chunking")
use_multi_level_chunking = gr.Checkbox(label="Use Multi-level Chunking")
chunk_language = gr.Dropdown(choices=['english', 'french', 'german', 'spanish'],
label="Chunking Language")
# Add JavaScript to toggle the visibility of the chunking options box
chunking_options_checkbox.change(
fn=lambda x: gr.update(visible=x),
inputs=[chunking_options_checkbox],
outputs=[chunking_options_box]
)
process_button = gr.Button("Process Videos")
with gr.Column():
progress_output = gr.Textbox(label="Progress")
error_output = gr.Textbox(label="Errors", visible=False)
results_output = gr.HTML(label="Results")
download_transcription = gr.File(label="Download All Transcriptions as JSON")
download_summary = gr.File(label="Download All Summaries as Text")
@error_handler
def process_videos_with_error_handling(urls, start_time, end_time, diarize, whisper_model,
custom_prompt_checkbox, custom_prompt, chunking_options_checkbox,
chunk_method, max_chunk_size, chunk_overlap, use_adaptive_chunking,
use_multi_level_chunking, chunk_language, api_name,
api_key, keywords, use_cookies, cookies, batch_size,
timestamp_option, keep_original_video, summarize_recursively,
progress: gr.Progress = gr.Progress()) -> tuple:
try:
logging.info("Entering process_videos_with_error_handling")
logging.info(f"Received URLs: {urls}")
if not urls:
raise ValueError("No URLs provided")
logging.debug("Input URL(s) is(are) valid")
# Ensure batch_size is an integer
try:
batch_size = int(batch_size)
except (ValueError, TypeError):
batch_size = 1 # Default to processing one video at a time if invalid
expanded_urls = parse_and_expand_urls(urls)
logging.info(f"Expanded URLs: {expanded_urls}")
total_videos = len(expanded_urls)
logging.info(f"Total videos to process: {total_videos}")
results = []
errors = []
results_html = ""
all_transcriptions = {}
all_summaries = ""
for i in range(0, total_videos, batch_size):
batch = expanded_urls[i:i + batch_size]
batch_results = []
for url in batch:
try:
start_seconds = convert_to_seconds(start_time)
end_seconds = convert_to_seconds(end_time) if end_time else None
logging.info(f"Attempting to extract metadata for {url}")
video_metadata = extract_metadata(url, use_cookies, cookies)
if not video_metadata:
raise ValueError(f"Failed to extract metadata for {url}")
chunk_options = {
'method': chunk_method,
'max_size': max_chunk_size,
'overlap': chunk_overlap,
'adaptive': use_adaptive_chunking,
'multi_level': use_multi_level_chunking,
'language': chunk_language
} if chunking_options_checkbox else None
result = process_url_with_metadata(
url, 2, whisper_model,
custom_prompt if custom_prompt_checkbox else None,
start_seconds, api_name, api_key,
False, False, False, False, 0.01, None, keywords, None, diarize,
end_time=end_seconds,
include_timestamps=(timestamp_option == "Include Timestamps"),
metadata=video_metadata,
use_chunking=chunking_options_checkbox,
chunk_options=chunk_options,
keep_original_video=keep_original_video
)
if result[0] is None: # Check if the first return value is None
error_message = "Processing failed without specific error"
batch_results.append((url, error_message, "Error", video_metadata, None, None))
errors.append(f"Error processing {url}: {error_message}")
else:
url, transcription, summary, json_file, summary_file, result_metadata = result
if transcription is None:
error_message = f"Processing failed for {url}: Transcription is None"
batch_results.append((url, error_message, "Error", result_metadata, None, None))
errors.append(error_message)
else:
batch_results.append(
(url, transcription, "Success", result_metadata, json_file, summary_file))
except Exception as e:
error_message = f"Error processing {url}: {str(e)}"
logging.error(error_message, exc_info=True)
batch_results.append((url, error_message, "Error", {}, None, None))
errors.append(error_message)
results.extend(batch_results)
if isinstance(progress, gr.Progress):
progress((i + len(batch)) / total_videos,
f"Processed {i + len(batch)}/{total_videos} videos")
# Generate HTML for results
for url, transcription, status, metadata, json_file, summary_file in results:
if status == "Success":
title = metadata.get('title', 'Unknown Title')
# Check if transcription is a string (which it should be now)
if isinstance(transcription, str):
# Split the transcription into metadata and actual transcription
parts = transcription.split('\n\n', 1)
if len(parts) == 2:
metadata_text, transcription_text = parts
else:
metadata_text = "Metadata not found"
transcription_text = transcription
else:
metadata_text = "Metadata format error"
transcription_text = "Transcription format error"
summary = open(summary_file, 'r').read() if summary_file else "No summary available"
results_html += f"""
<div class="result-box">
<gradio-accordion>
<gradio-accordion-item label="{title}">
<p><strong>URL:</strong> <a href="{url}" target="_blank">{url}</a></p>
<h4>Metadata:</h4>
<pre>{metadata_text}</pre>
<h4>Transcription:</h4>
<div class="transcription">{transcription_text}</div>
<h4>Summary:</h4>
<div class="summary">{summary}</div>
</gradio-accordion-item>
</gradio-accordion>
</div>
"""
logging.debug(f"Transcription for {url}: {transcription[:200]}...")
all_transcriptions[url] = transcription
all_summaries += f"Title: {title}\nURL: {url}\n\n{metadata_text}\n\nTranscription:\n{transcription_text}\n\nSummary:\n{summary}\n\n---\n\n"
else:
results_html += f"""
<div class="result-box error">
<h3>Error processing {url}</h3>
<p>{transcription}</p>
</div>
"""
# Save all transcriptions and summaries to files
with open('all_transcriptions.json', 'w') as f:
json.dump(all_transcriptions, f, indent=2)
with open('all_summaries.txt', 'w') as f:
f.write(all_summaries)
error_summary = "\n".join(errors) if errors else "No errors occurred."
return (
f"Processed {total_videos} videos. {len(errors)} errors occurred.",
error_summary,
results_html,
'all_transcriptions.json',
'all_summaries.txt'
)
except Exception as e:
logging.error(f"Unexpected error in process_videos_with_error_handling: {str(e)}", exc_info=True)
return (
f"An unexpected error occurred: {str(e)}",
str(e),
"<div class='result-box error'><h3>Unexpected Error</h3><p>" + str(e) + "</p></div>",
None,
None
)
def process_videos_wrapper(urls, start_time, end_time, diarize, whisper_model,
custom_prompt_checkbox, custom_prompt, chunking_options_checkbox,
chunk_method, max_chunk_size, chunk_overlap, use_adaptive_chunking,
use_multi_level_chunking, chunk_language, summarize_recursively, api_name,
api_key, keywords, use_cookies, cookies, batch_size,
timestamp_option, keep_original_video):
try:
logging.info("process_videos_wrapper called")
result = process_videos_with_error_handling(
urls, start_time, end_time, diarize, whisper_model,
custom_prompt_checkbox, custom_prompt, chunking_options_checkbox,
chunk_method, max_chunk_size, chunk_overlap, use_adaptive_chunking,
use_multi_level_chunking, chunk_language, api_name,
api_key, keywords, use_cookies, cookies, batch_size,
timestamp_option, keep_original_video, summarize_recursively
)
logging.info("process_videos_with_error_handling completed")
# Ensure that result is a tuple with 5 elements
if not isinstance(result, tuple) or len(result) != 5:
raise ValueError(
f"Expected 5 outputs, but got {len(result) if isinstance(result, tuple) else 1}")
return result
except Exception as e:
logging.error(f"Error in process_videos_wrapper: {str(e)}", exc_info=True)
# Return a tuple with 5 elements in case of any error
return (
f"An error occurred: {str(e)}", # progress_output
str(e), # error_output
f"<div class='error'>Error: {str(e)}</div>", # results_output
None, # download_transcription
None # download_summary
)
# FIXME - remove dead args for process_url_with_metadata
@error_handler
def process_url_with_metadata(url, num_speakers, whisper_model, custom_prompt, offset, api_name, api_key,
vad_filter, download_video_flag, download_audio, rolling_summarization,
detail_level, question_box, keywords, local_file_path, diarize, end_time=None,
include_timestamps=True, metadata=None, use_chunking=False,
chunk_options=None, keep_original_video=False):
try:
logging.info(f"Starting process_url_metadata for URL: {url}")
# Create download path
download_path = create_download_directory("Video_Downloads")
logging.info(f"Download path created at: {download_path}")
# Initialize info_dict
info_dict = {}
# Handle URL or local file
if local_file_path:
video_file_path = local_file_path
# Extract basic info from local file
info_dict = {
'webpage_url': local_file_path,
'title': os.path.basename(local_file_path),
'description': "Local file",
'channel_url': None,
'duration': None,
'channel': None,
'uploader': None,
'upload_date': None
}
else:
# Extract video information
with yt_dlp.YoutubeDL({'quiet': True}) as ydl:
try:
full_info = ydl.extract_info(url, download=False)
# Create a safe subset of info to log
safe_info = {
'title': full_info.get('title', 'No title'),
'duration': full_info.get('duration', 'Unknown duration'),
'upload_date': full_info.get('upload_date', 'Unknown upload date'),
'uploader': full_info.get('uploader', 'Unknown uploader'),
'view_count': full_info.get('view_count', 'Unknown view count')
}
logging.debug(f"Full info extracted for {url}: {safe_info}")
except Exception as e:
logging.error(f"Error extracting video info: {str(e)}")
return None, None, None, None, None, None
# Filter the required metadata
if full_info:
info_dict = {
'webpage_url': full_info.get('webpage_url', url),
'title': full_info.get('title'),
'description': full_info.get('description'),
'channel_url': full_info.get('channel_url'),
'duration': full_info.get('duration'),
'channel': full_info.get('channel'),
'uploader': full_info.get('uploader'),
'upload_date': full_info.get('upload_date')
}
logging.debug(f"Filtered info_dict: {info_dict}")
else:
logging.error("Failed to extract video information")
return None, None, None, None, None, None
# Download video/audio
logging.info("Downloading video/audio...")
video_file_path = download_video(url, download_path, full_info, download_video_flag)
if not video_file_path:
logging.error(f"Failed to download video/audio from {url}")
return None, None, None, None, None, None
logging.info(f"Processing file: {video_file_path}")
# Perform transcription
logging.info("Starting transcription...")
audio_file_path, segments = perform_transcription(video_file_path, offset, whisper_model,
vad_filter)
if audio_file_path is None or segments is None:
logging.error("Transcription failed or segments not available.")
return None, None, None, None, None, None
logging.info(f"Transcription completed. Number of segments: {len(segments)}")
# Add metadata to segments
segments_with_metadata = {
"metadata": info_dict,
"segments": segments
}
# Save segments with metadata to JSON file
segments_json_path = os.path.splitext(audio_file_path)[0] + ".segments.json"
with open(segments_json_path, 'w') as f:
json.dump(segments_with_metadata, f, indent=2)
# Delete the .wav file after successful transcription
files_to_delete = [audio_file_path]
for file_path in files_to_delete:
if file_path and os.path.exists(file_path):
try:
os.remove(file_path)
logging.info(f"Successfully deleted file: {file_path}")
except Exception as e:
logging.warning(f"Failed to delete file {file_path}: {str(e)}")
# Delete the mp4 file after successful transcription if not keeping original audio
# Modify the file deletion logic to respect keep_original_video
if not keep_original_video:
files_to_delete = [audio_file_path, video_file_path]
for file_path in files_to_delete:
if file_path and os.path.exists(file_path):
try:
os.remove(file_path)
logging.info(f"Successfully deleted file: {file_path}")
except Exception as e:
logging.warning(f"Failed to delete file {file_path}: {str(e)}")
else:
logging.info(f"Keeping original video file: {video_file_path}")
logging.info(f"Keeping original audio file: {audio_file_path}")
# Process segments based on the timestamp option
if not include_timestamps:
segments = [{'Text': segment['Text']} for segment in segments]
logging.info(f"Segments processed for timestamp inclusion: {segments}")
# Extract text from segments
transcription_text = extract_text_from_segments(segments)
if transcription_text.startswith("Error:"):
logging.error(f"Failed to extract transcription: {transcription_text}")
return None, None, None, None, None, None
# Use transcription_text instead of segments for further processing
full_text_with_metadata = f"{json.dumps(info_dict, indent=2)}\n\n{transcription_text}"
logging.debug(f"Full text with metadata extracted: {full_text_with_metadata[:100]}...")
# Perform summarization if API is provided
summary_text = None
if api_name:
# API key resolution handled at base of function if none provided
api_key = api_key if api_key else None
logging.info(f"Starting summarization with {api_name}...")
summary_text = perform_summarization(api_name, full_text_with_metadata, custom_prompt, api_key)
if summary_text is None:
logging.error("Summarization failed.")
return None, None, None, None, None, None
logging.debug(f"Summarization completed: {summary_text[:100]}...")
# Save transcription and summary
logging.info("Saving transcription and summary...")
download_path = create_download_directory("Audio_Processing")
json_file_path, summary_file_path = save_transcription_and_summary(full_text_with_metadata,
summary_text,
download_path, info_dict)
logging.info(
f"Transcription and summary saved. JSON file: {json_file_path}, Summary file: {summary_file_path}")
# Prepare keywords for database
if isinstance(keywords, str):
keywords_list = [kw.strip() for kw in keywords.split(',') if kw.strip()]
elif isinstance(keywords, (list, tuple)):
keywords_list = keywords
else:
keywords_list = []
logging.info(f"Keywords prepared: {keywords_list}")
# Add to database
logging.info("Adding to database...")
add_media_to_database(info_dict['webpage_url'], info_dict, full_text_with_metadata, summary_text,
keywords_list, custom_prompt, whisper_model)
logging.info(f"Media added to database: {info_dict['webpage_url']}")
return info_dict[
'webpage_url'], full_text_with_metadata, summary_text, json_file_path, summary_file_path, info_dict
except Exception as e:
logging.error(f"Error in process_url_with_metadata: {str(e)}", exc_info=True)
return None, None, None, None, None, None
process_button.click(
fn=process_videos_wrapper,
inputs=[
url_input, start_time_input, end_time_input, diarize_input, whisper_model_input,
custom_prompt_checkbox, custom_prompt_input, chunking_options_checkbox,
chunk_method, max_chunk_size, chunk_overlap, use_adaptive_chunking,
use_multi_level_chunking, chunk_language, summarize_recursively, api_name_input, api_key_input,
keywords_input, use_cookies_input, cookies_input, batch_size_input,
timestamp_option, keep_original_video
],
outputs=[progress_output, error_output, results_output, download_transcription, download_summary]
)
def create_audio_processing_tab():
with gr.TabItem("Audio File Transcription + Summarization"):
gr.Markdown("# Transcribe & Summarize Audio Files from URLs or Local Files!")
with gr.Row():
with gr.Column():
audio_url_input = gr.Textbox(label="Audio File URL(s)", placeholder="Enter the URL(s) of the audio file(s), one per line")
audio_file_input = gr.File(label="Upload Audio File", file_types=["audio/*"])
use_cookies_input = gr.Checkbox(label="Use cookies for authenticated download", value=False)
cookies_input = gr.Textbox(
label="Audio Download Cookies",
placeholder="Paste your cookies here (JSON format)",
lines=3,
visible=False
)
use_cookies_input.change(
fn=lambda x: gr.update(visible=x),
inputs=[use_cookies_input],
outputs=[cookies_input]
)
diarize_input = gr.Checkbox(label="Enable Speaker Diarization", value=False)
whisper_model_input = gr.Dropdown(choices=whisper_models, value="medium", label="Whisper Model")
custom_prompt_checkbox = gr.Checkbox(label="Use Custom Prompt", value=False, visible=True)
custom_prompt_input = gr.Textbox(label="Custom Prompt", placeholder="Enter custom prompt here", lines=3, visible=False)
custom_prompt_checkbox.change(
fn=lambda x: gr.update(visible=x),
inputs=[custom_prompt_checkbox],
outputs=[custom_prompt_input]
)
api_name_input = gr.Dropdown(
choices=[None, "Local-LLM", "OpenAI", "Anthropic", "Cohere", "Groq", "DeepSeek", "OpenRouter",
"Llama.cpp", "Kobold", "Ooba", "Tabbyapi", "VLLM", "HuggingFace"],
value=None,
label="API for Summarization (Optional)"
)
api_key_input = gr.Textbox(label="API Key (if required)", placeholder="Enter your API key here", type="password")
custom_keywords_input = gr.Textbox(label="Custom Keywords", placeholder="Enter custom keywords, comma-separated")
keep_original_input = gr.Checkbox(label="Keep original audio file", value=False)
chunking_options_checkbox = gr.Checkbox(label="Show Chunking Options", value=False)
with gr.Row(visible=False) as chunking_options_box:
gr.Markdown("### Chunking Options")
with gr.Column():
chunk_method = gr.Dropdown(choices=['words', 'sentences', 'paragraphs', 'tokens'], label="Chunking Method")
max_chunk_size = gr.Slider(minimum=100, maximum=1000, value=300, step=50, label="Max Chunk Size")
chunk_overlap = gr.Slider(minimum=0, maximum=100, value=0, step=10, label="Chunk Overlap")
use_adaptive_chunking = gr.Checkbox(label="Use Adaptive Chunking")
use_multi_level_chunking = gr.Checkbox(label="Use Multi-level Chunking")
chunk_language = gr.Dropdown(choices=['english', 'french', 'german', 'spanish'], label="Chunking Language")
chunking_options_checkbox.change(
fn=lambda x: gr.update(visible=x),
inputs=[chunking_options_checkbox],
outputs=[chunking_options_box]
)
process_audio_button = gr.Button("Process Audio File(s)")
with gr.Column():
audio_progress_output = gr.Textbox(label="Progress")
audio_transcription_output = gr.Textbox(label="Transcription")
audio_summary_output = gr.Textbox(label="Summary")
download_transcription = gr.File(label="Download All Transcriptions as JSON")
download_summary = gr.File(label="Download All Summaries as Text")
process_audio_button.click(
fn=process_audio_files,
inputs=[audio_url_input, audio_file_input, whisper_model_input, api_name_input, api_key_input,
use_cookies_input, cookies_input, keep_original_input, custom_keywords_input, custom_prompt_input,
chunk_method, max_chunk_size, chunk_overlap, use_adaptive_chunking, use_multi_level_chunking,
chunk_language, diarize_input],
outputs=[audio_progress_output, audio_transcription_output, audio_summary_output]
)
def create_podcast_tab():
with gr.TabItem("Podcast"):
gr.Markdown("# Podcast Transcription and Ingestion")
with gr.Row():
with gr.Column():
podcast_url_input = gr.Textbox(label="Podcast URL", placeholder="Enter the podcast URL here")
podcast_title_input = gr.Textbox(label="Podcast Title", placeholder="Will be auto-detected if possible")
podcast_author_input = gr.Textbox(label="Podcast Author", placeholder="Will be auto-detected if possible")
podcast_keywords_input = gr.Textbox(
label="Keywords",
placeholder="Enter keywords here (comma-separated, include series name if applicable)",
value="podcast,audio",
elem_id="podcast-keywords-input"
)
custom_prompt_checkbox = gr.Checkbox(label="Use Custom Prompt", value=False, visible=True)
podcast_custom_prompt_input = gr.Textbox(
label="Custom Prompt",
placeholder="Enter custom prompt for summarization (optional)",
lines=3,
visible=False
)
custom_prompt_checkbox.change(
fn=lambda x: gr.update(visible=x),
inputs=[custom_prompt_checkbox],
outputs=[podcast_custom_prompt_input]
)
podcast_api_name_input = gr.Dropdown(
choices=[None, "Local-LLM", "OpenAI", "Anthropic", "Cohere", "Groq", "DeepSeek", "OpenRouter", "Llama.cpp",
"Kobold", "Ooba", "Tabbyapi", "VLLM", "HuggingFace"],
value=None,
label="API Name for Summarization (Optional)"
)
podcast_api_key_input = gr.Textbox(label="API Key (if required)", type="password")
podcast_whisper_model_input = gr.Dropdown(choices=whisper_models, value="medium", label="Whisper Model")
keep_original_input = gr.Checkbox(label="Keep original audio file", value=False)
enable_diarization_input = gr.Checkbox(label="Enable speaker diarization", value=False)
use_cookies_input = gr.Checkbox(label="Use cookies for yt-dlp", value=False)
cookies_input = gr.Textbox(
label="yt-dlp Cookies",
placeholder="Paste your cookies here (JSON format)",
lines=3,
visible=False
)
use_cookies_input.change(
fn=lambda x: gr.update(visible=x),
inputs=[use_cookies_input],
outputs=[cookies_input]
)
chunking_options_checkbox = gr.Checkbox(label="Show Chunking Options", value=False)
with gr.Row(visible=False) as chunking_options_box:
gr.Markdown("### Chunking Options")
with gr.Column():
chunk_method = gr.Dropdown(choices=['words', 'sentences', 'paragraphs', 'tokens'], label="Chunking Method")
max_chunk_size = gr.Slider(minimum=100, maximum=1000, value=300, step=50, label="Max Chunk Size")
chunk_overlap = gr.Slider(minimum=0, maximum=100, value=0, step=10, label="Chunk Overlap")
use_adaptive_chunking = gr.Checkbox(label="Use Adaptive Chunking")
use_multi_level_chunking = gr.Checkbox(label="Use Multi-level Chunking")
chunk_language = gr.Dropdown(choices=['english', 'french', 'german', 'spanish'], label="Chunking Language")
chunking_options_checkbox.change(
fn=lambda x: gr.update(visible=x),
inputs=[chunking_options_checkbox],
outputs=[chunking_options_box]
)
podcast_process_button = gr.Button("Process Podcast")
with gr.Column():
podcast_progress_output = gr.Textbox(label="Progress")
podcast_error_output = gr.Textbox(label="Error Messages")
podcast_transcription_output = gr.Textbox(label="Transcription")
podcast_summary_output = gr.Textbox(label="Summary")
download_transcription = gr.File(label="Download Transcription as JSON")
download_summary = gr.File(label="Download Summary as Text")
podcast_process_button.click(
fn=process_podcast,
inputs=[podcast_url_input, podcast_title_input, podcast_author_input,
podcast_keywords_input, podcast_custom_prompt_input, podcast_api_name_input,
podcast_api_key_input, podcast_whisper_model_input, keep_original_input,
enable_diarization_input, use_cookies_input, cookies_input,
chunk_method, max_chunk_size, chunk_overlap, use_adaptive_chunking,
use_multi_level_chunking, chunk_language],
outputs=[podcast_progress_output, podcast_transcription_output, podcast_summary_output,
podcast_title_input, podcast_author_input, podcast_keywords_input, podcast_error_output,
download_transcription, download_summary]
)
def create_website_scraping_tab():
with gr.TabItem("Website Scraping"):
gr.Markdown("# Scrape Websites & Summarize Articles using a Headless Chrome Browser!")
with gr.Row():
with gr.Column():
url_input = gr.Textbox(label="Article URLs", placeholder="Enter article URLs here, one per line", lines=5)
custom_article_title_input = gr.Textbox(label="Custom Article Titles (Optional, one per line)",
placeholder="Enter custom titles for the articles, one per line",
lines=5)
custom_prompt_input = gr.Textbox(label="Custom Prompt (Optional)",
placeholder="Provide a custom prompt for summarization", lines=3)
api_name_input = gr.Dropdown(
choices=[None, "Local-LLM", "OpenAI", "Anthropic", "Cohere", "Groq", "DeepSeek", "OpenRouter",
"Llama.cpp", "Kobold", "Ooba", "Tabbyapi", "VLLM", "HuggingFace"], value=None, label="API Name (Mandatory for Summarization)")
api_key_input = gr.Textbox(label="API Key (Mandatory if API Name is specified)",
placeholder="Enter your API key here; Ignore if using Local API or Built-in API")
keywords_input = gr.Textbox(label="Keywords", placeholder="Enter keywords here (comma-separated)",
value="default,no_keyword_set", visible=True)
scrape_button = gr.Button("Scrape and Summarize")
with gr.Column():
result_output = gr.Textbox(label="Result", lines=20)
scrape_button.click(
fn=scrape_and_summarize_multiple,
inputs=[url_input, custom_prompt_input, api_name_input, api_key_input, keywords_input,
custom_article_title_input],
outputs=result_output
)
def create_pdf_ingestion_tab():
with gr.TabItem("PDF Ingestion"):
# TODO - Add functionality to extract metadata from pdf as part of conversion process in marker
gr.Markdown("# Ingest PDF Files and Extract Metadata")
with gr.Row():
with gr.Column():
pdf_file_input = gr.File(label="Uploaded PDF File", file_types=[".pdf"], visible=False)
pdf_upload_button = gr.UploadButton("Click to Upload PDF", file_types=[".pdf"])
pdf_title_input = gr.Textbox(label="Title (Optional)")
pdf_author_input = gr.Textbox(label="Author (Optional)")
pdf_keywords_input = gr.Textbox(label="Keywords (Optional, comma-separated)")
pdf_ingest_button = gr.Button("Ingest PDF")
pdf_upload_button.upload(fn=lambda file: file, inputs=pdf_upload_button, outputs=pdf_file_input)
with gr.Column():
pdf_result_output = gr.Textbox(label="Result")
pdf_ingest_button.click(
fn=process_and_cleanup_pdf,
inputs=[pdf_file_input, pdf_title_input, pdf_author_input, pdf_keywords_input],
outputs=pdf_result_output
)
#
#
################################################################################################################
# Functions for Re-Summarization
#
def create_resummary_tab():
with gr.TabItem("Re-Summarize"):
gr.Markdown("# Re-Summarize Existing Content")
with gr.Row():
search_query_input = gr.Textbox(label="Search Query", placeholder="Enter your search query here...")
search_type_input = gr.Radio(choices=["Title", "URL", "Keyword", "Content"], value="Title", label="Search By")
search_button = gr.Button("Search")
items_output = gr.Dropdown(label="Select Item", choices=[], interactive=True)
item_mapping = gr.State({})
with gr.Row():
api_name_input = gr.Dropdown(
choices=["Local-LLM", "OpenAI", "Anthropic", "Cohere", "Groq", "DeepSeek", "OpenRouter",
"Llama.cpp", "Kobold", "Ooba", "Tabbyapi", "VLLM", "HuggingFace"],
value="Local-LLM", label="API Name")
api_key_input = gr.Textbox(label="API Key", placeholder="Enter your API key here")
chunking_options_checkbox = gr.Checkbox(label="Use Chunking", value=False)
with gr.Row(visible=False) as chunking_options_box:
chunk_method = gr.Dropdown(choices=['words', 'sentences', 'paragraphs', 'tokens'],
label="Chunking Method", value='words')
max_chunk_size = gr.Slider(minimum=100, maximum=1000, value=300, step=50, label="Max Chunk Size")
chunk_overlap = gr.Slider(minimum=0, maximum=100, value=0, step=10, label="Chunk Overlap")
custom_prompt_checkbox = gr.Checkbox(label="Use Custom Prompt", value=False)
custom_prompt_input = gr.Textbox(label="Custom Prompt", placeholder="Enter custom prompt here", lines=3, visible=False)
resummary_button = gr.Button("Re-Summarize")
result_output = gr.Textbox(label="Result")
# Connect the UI elements
search_button.click(
fn=update_resummary_dropdown,
inputs=[search_query_input, search_type_input],
outputs=[items_output, item_mapping]
)
chunking_options_checkbox.change(
fn=lambda x: gr.update(visible=x),
inputs=[chunking_options_checkbox],
outputs=[chunking_options_box]
)
custom_prompt_checkbox.change(
fn=lambda x: gr.update(visible=x),
inputs=[custom_prompt_checkbox],
outputs=[custom_prompt_input]
)
resummary_button.click(
fn=resummary_content_wrapper,
inputs=[items_output, item_mapping, api_name_input, api_key_input, chunking_options_checkbox, chunk_method,
max_chunk_size, chunk_overlap, custom_prompt_checkbox, custom_prompt_input],
outputs=result_output
)
return search_query_input, search_type_input, search_button, items_output, item_mapping, api_name_input, api_key_input, chunking_options_checkbox, chunking_options_box, chunk_method, max_chunk_size, chunk_overlap, custom_prompt_checkbox, custom_prompt_input, resummary_button, result_output
def update_resummary_dropdown(search_query, search_type):
if search_type in ['Title', 'URL']:
results = fetch_items_by_title_or_url(search_query, search_type)
elif search_type == 'Keyword':
results = fetch_items_by_keyword(search_query)
else: # Content
results = fetch_items_by_content(search_query)
item_options = [f"{item[1]} ({item[2]})" for item in results]
item_mapping = {f"{item[1]} ({item[2]})": item[0] for item in results}
return gr.update(choices=item_options), item_mapping
def resummary_content_wrapper(selected_item, item_mapping, api_name, api_key, chunking_options_checkbox, chunk_method,
max_chunk_size, chunk_overlap, custom_prompt_checkbox, custom_prompt):
if not selected_item or not api_name or not api_key:
return "Please select an item and provide API details."
media_id = item_mapping.get(selected_item)
if not media_id:
return "Invalid selection."
content, old_prompt, old_summary = fetch_item_details(media_id)
if not content:
return "No content available for re-summarization."
# Prepare chunking options
chunk_options = {
'method': chunk_method,
'max_size': int(max_chunk_size),
'overlap': int(chunk_overlap),
'language': 'english',
'adaptive': True,
'multi_level': False,
} if chunking_options_checkbox else None
# Prepare summarization prompt
summarization_prompt = custom_prompt if custom_prompt_checkbox and custom_prompt else None
# Call the resummary_content function
result = resummary_content(media_id, content, api_name, api_key, chunk_options, summarization_prompt)
return result
def resummary_content(selected_item, item_mapping, api_name, api_key, chunking_options_checkbox, chunk_method, max_chunk_size, chunk_overlap, custom_prompt_checkbox, custom_prompt):
if not selected_item or not api_name or not api_key:
return "Please select an item and provide API details."
media_id = item_mapping.get(selected_item)
if not media_id:
return "Invalid selection."
content, old_prompt, old_summary = fetch_item_details(media_id)
if not content:
return "No content available for re-summarization."
# Load configuration
config = load_comprehensive_config()
# Prepare chunking options
chunk_options = {
'method': chunk_method,
'max_size': int(max_chunk_size),
'overlap': int(chunk_overlap),
'language': 'english',
'adaptive': True,
'multi_level': False,
}
# Chunking logic
if chunking_options_checkbox:
chunks = improved_chunking_process(content, chunk_options)
else:
chunks = [{'text': content, 'metadata': {}}]
# Prepare summarization prompt
if custom_prompt_checkbox and custom_prompt:
summarization_prompt = custom_prompt
else:
summarization_prompt = config.get('Prompts', 'default_summary_prompt', fallback="Summarize the following text:")
# Summarization logic
summaries = []
for chunk in chunks:
chunk_text = chunk['text']
try:
chunk_summary = summarize_chunk(api_name, chunk_text, summarization_prompt, api_key)
if chunk_summary:
summaries.append(chunk_summary)
else:
logging.warning(f"Summarization failed for chunk: {chunk_text[:100]}...")
except Exception as e:
logging.error(f"Error during summarization: {str(e)}")
return f"Error during summarization: {str(e)}"
if not summaries:
return "Summarization failed for all chunks."
new_summary = " ".join(summaries)
# Update the database with the new summary
try:
update_result = update_media_content(selected_item, item_mapping, content, summarization_prompt, new_summary)
if "successfully" in update_result.lower():
return f"Re-summarization complete. New summary: {new_summary[:500]}..."
else:
return f"Error during database update: {update_result}"
except Exception as e:
logging.error(f"Error updating database: {str(e)}")
return f"Error updating database: {str(e)}"
# End of Re-Summarization Functions
#
##############################################################################################################
#
# Search Tab
def add_or_update_prompt(title, description, system_prompt, user_prompt):
if not title:
return "Error: Title is required."
existing_prompt = fetch_prompt_details(title)
if existing_prompt:
# Update existing prompt
result = update_prompt_in_db(title, description, system_prompt, user_prompt)
else:
# Insert new prompt
result = insert_prompt_to_db(title, description, system_prompt, user_prompt)
# Refresh the prompt dropdown
update_prompt_dropdown()
return result
def load_prompt_details(selected_prompt):
if selected_prompt:
details = fetch_prompt_details(selected_prompt)
if details:
return details[0], details[1], details[2], details[3]
return "", "", "", ""
def update_prompt_in_db(title, description, system_prompt, user_prompt):
try:
conn = sqlite3.connect('prompts.db')
cursor = conn.cursor()
cursor.execute(
"UPDATE Prompts SET details = ?, system = ?, user = ? WHERE name = ?",
(description, system_prompt, user_prompt, title)
)
conn.commit()
conn.close()
return "Prompt updated successfully!"
except sqlite3.Error as e:
return f"Error updating prompt: {e}"
def search_prompts(query):
try:
conn = sqlite3.connect('prompts.db')
cursor = conn.cursor()
cursor.execute("SELECT name, details, system, user FROM Prompts WHERE name LIKE ? OR details LIKE ?",
(f"%{query}%", f"%{query}%"))
results = cursor.fetchall()
conn.close()
return results
except sqlite3.Error as e:
print(f"Error searching prompts: {e}")
return []
def create_search_tab():
with gr.TabItem("Search / Detailed View"):
with gr.Row():
with gr.Column():
gr.Markdown("# Search across all ingested items in the Database")
gr.Markdown(" by Title / URL / Keyword / or Content via SQLite Full-Text-Search")
search_query_input = gr.Textbox(label="Search Query", placeholder="Enter your search query here...")
search_type_input = gr.Radio(choices=["Title", "URL", "Keyword", "Content"], value="Title", label="Search By")
search_button = gr.Button("Search")
items_output = gr.Dropdown(label="Select Item", choices=[])
item_mapping = gr.State({})
prompt_summary_output = gr.HTML(label="Prompt & Summary", visible=True)
content_output = gr.Markdown(label="Content", visible=True)
search_button.click(
fn=update_dropdown,
inputs=[search_query_input, search_type_input],
outputs=[items_output, item_mapping]
)
with gr.Column():
items_output.change(
fn=update_detailed_view,
inputs=[items_output, item_mapping],
outputs=[prompt_summary_output, content_output]
)
def create_prompt_view_tab():
def display_search_results(query):
if not query.strip():
return "Please enter a search query."
results = search_prompts(query)
print(f"Processed search results for query '{query}': {results}")
if results:
result_md = "## Search Results:\n"
for result in results:
print(f"Result item: {result}")
if len(result) == 4:
name, details, system, user = result
result_md += f"**Title:** {name}\n\n"
result_md += f"**Description:** {details}\n\n"
result_md += f"**System Prompt:** {system}\n\n"
result_md += f"**User Prompt:** {user}\n\n"
result_md += "---\n"
else:
result_md += "Error: Unexpected result format.\n\n---\n"
return result_md
return "No results found."
with gr.TabItem("Search Prompts"):
with gr.Row():
with gr.Column():
gr.Markdown("# Search and View Prompt Details")
gr.Markdown("Currently has all of the https://github.com/danielmiessler/fabric prompts already available")
search_query_input = gr.Textbox(label="Search Prompts", placeholder="Enter your search query...")
search_button = gr.Button("Search Prompts")
with gr.Column():
search_results_output = gr.Markdown()
prompt_details_output = gr.HTML()
search_button.click(
fn=display_search_results,
inputs=[search_query_input],
outputs=[search_results_output]
)
def create_prompt_edit_tab():
with gr.TabItem("Edit Prompts"):
with gr.Row():
with gr.Column():
prompt_dropdown = gr.Dropdown(
label="Select Prompt",
choices=[],
interactive=True
)
prompt_list_button = gr.Button("List Prompts")
with gr.Column():
title_input = gr.Textbox(label="Title", placeholder="Enter the prompt title")
description_input = gr.Textbox(label="Description", placeholder="Enter the prompt description", lines=3)
system_prompt_input = gr.Textbox(label="System Prompt", placeholder="Enter the system prompt", lines=3)
user_prompt_input = gr.Textbox(label="User Prompt", placeholder="Enter the user prompt", lines=3)
add_prompt_button = gr.Button("Add/Update Prompt")
add_prompt_output = gr.HTML()
# Event handlers
prompt_list_button.click(
fn=update_prompt_dropdown,
outputs=prompt_dropdown
)
add_prompt_button.click(
fn=add_or_update_prompt,
inputs=[title_input, description_input, system_prompt_input, user_prompt_input],
outputs=add_prompt_output
)
# Load prompt details when selected
prompt_dropdown.change(
fn=load_prompt_details,
inputs=[prompt_dropdown],
outputs=[title_input, description_input, system_prompt_input, user_prompt_input]
)
# End of Search Tab Functions
#
################################################################################################################
#
# Llamafile Tab
def start_llamafile(*args):
# Unpack arguments
(am_noob, verbose_checked, threads_checked, threads_value, http_threads_checked, http_threads_value,
model_checked, model_value, hf_repo_checked, hf_repo_value, hf_file_checked, hf_file_value,
ctx_size_checked, ctx_size_value, ngl_checked, ngl_value, host_checked, host_value, port_checked,
port_value) = args
# Construct command based on checked values
command = []
if am_noob:
am_noob = True
if verbose_checked is not None and verbose_checked:
command.append('-v')
if threads_checked and threads_value is not None:
command.extend(['-t', str(threads_value)])
if http_threads_checked and http_threads_value is not None:
command.extend(['--threads', str(http_threads_value)])
if model_checked and model_value is not None:
model_path = model_value.name
command.extend(['-m', model_path])
if hf_repo_checked and hf_repo_value is not None:
command.extend(['-hfr', hf_repo_value])
if hf_file_checked and hf_file_value is not None:
command.extend(['-hff', hf_file_value])
if ctx_size_checked and ctx_size_value is not None:
command.extend(['-c', str(ctx_size_value)])
if ngl_checked and ngl_value is not None:
command.extend(['-ngl', str(ngl_value)])
if host_checked and host_value is not None:
command.extend(['--host', host_value])
if port_checked and port_value is not None:
command.extend(['--port', str(port_value)])
# Code to start llamafile with the provided configuration
local_llm_gui_function(am_noob, verbose_checked, threads_checked, threads_value,
http_threads_checked, http_threads_value, model_checked,
model_value, hf_repo_checked, hf_repo_value, hf_file_checked,
hf_file_value, ctx_size_checked, ctx_size_value, ngl_checked,
ngl_value, host_checked, host_value, port_checked, port_value, )
# Example command output to verify
return f"Command built and ran: {' '.join(command)} \n\nLlamafile started successfully."
def stop_llamafile():
# Code to stop llamafile
# ...
return "Llamafile stopped"
def create_llamafile_settings_tab():
with gr.TabItem("Local LLM with Llamafile"):
gr.Markdown("# Settings for Llamafile")
am_noob = gr.Checkbox(label="Check this to enable sane defaults", value=False, visible=True)
advanced_mode_toggle = gr.Checkbox(label="Advanced Mode - Enable to show all settings", value=False)
model_checked = gr.Checkbox(label="Enable Setting Local LLM Model Path", value=False, visible=True)
model_value = gr.Textbox(label="Select Local Model File", value="", visible=True)
ngl_checked = gr.Checkbox(label="Enable Setting GPU Layers", value=False, visible=True)
ngl_value = gr.Number(label="Number of GPU Layers", value=None, precision=0, visible=True)
advanced_inputs = create_llamafile_advanced_inputs()
start_button = gr.Button("Start Llamafile")
stop_button = gr.Button("Stop Llamafile")
output_display = gr.Markdown()
start_button.click(
fn=start_llamafile,
inputs=[am_noob, model_checked, model_value, ngl_checked, ngl_value] + advanced_inputs,
outputs=output_display
)
def create_llamafile_advanced_inputs():
verbose_checked = gr.Checkbox(label="Enable Verbose Output", value=False, visible=False)
threads_checked = gr.Checkbox(label="Set CPU Threads", value=False, visible=False)
threads_value = gr.Number(label="Number of CPU Threads", value=None, precision=0, visible=False)
http_threads_checked = gr.Checkbox(label="Set HTTP Server Threads", value=False, visible=False)
http_threads_value = gr.Number(label="Number of HTTP Server Threads", value=None, precision=0, visible=False)
hf_repo_checked = gr.Checkbox(label="Use Huggingface Repo Model", value=False, visible=False)
hf_repo_value = gr.Textbox(label="Huggingface Repo Name", value="", visible=False)
hf_file_checked = gr.Checkbox(label="Set Huggingface Model File", value=False, visible=False)
hf_file_value = gr.Textbox(label="Huggingface Model File", value="", visible=False)
ctx_size_checked = gr.Checkbox(label="Set Prompt Context Size", value=False, visible=False)
ctx_size_value = gr.Number(label="Prompt Context Size", value=8124, precision=0, visible=False)
host_checked = gr.Checkbox(label="Set IP to Listen On", value=False, visible=False)
host_value = gr.Textbox(label="Host IP Address", value="", visible=False)
port_checked = gr.Checkbox(label="Set Server Port", value=False, visible=False)
port_value = gr.Number(label="Port Number", value=None, precision=0, visible=False)
return [verbose_checked, threads_checked, threads_value, http_threads_checked, http_threads_value,
hf_repo_checked, hf_repo_value, hf_file_checked, hf_file_value, ctx_size_checked, ctx_size_value,
host_checked, host_value, port_checked, port_value]
#
# End of Llamafile Tab Functions
################################################################################################################
#
# Chat Interface Tab Functions
def create_chat_interface():
with gr.TabItem("Remote LLM Chat"):
gr.Markdown("# Chat with a designated LLM Endpoint, using your selected item as starting context")
with gr.Row():
with gr.Column(scale=1):
search_query_input = gr.Textbox(label="Search Query", placeholder="Enter your search query here...")
search_type_input = gr.Radio(choices=["Title", "URL", "Keyword", "Content"], value="Title", label="Search By")
search_button = gr.Button("Search")
with gr.Column(scale=2):
items_output = gr.Dropdown(label="Select Item", choices=[], interactive=True)
item_mapping = gr.State({})
with gr.Row():
use_content = gr.Checkbox(label="Use Content")
use_summary = gr.Checkbox(label="Use Summary")
use_prompt = gr.Checkbox(label="Use Prompt")
api_endpoint = gr.Dropdown(label="Select API Endpoint", choices=["Local-LLM", "OpenAI", "Anthropic", "Cohere", "Groq", "DeepSeek", "OpenRouter", "Llama.cpp", "Kobold", "Ooba", "Tabbyapi", "VLLM", "HuggingFace"])
api_key = gr.Textbox(label="API Key (if required)", type="password")
preset_prompt = gr.Dropdown(label="Select Preset Prompt", choices=load_preset_prompts())
user_prompt = gr.Textbox(label="Modify Prompt (Need to delete this after the first message, otherwise it'll "
"be used as the next message instead)", lines=3)
chatbot = gr.Chatbot(height=500)
msg = gr.Textbox(label="Enter your message")
submit = gr.Button("Submit")
chat_history = gr.State([])
media_content = gr.State({})
selected_parts = gr.State([])
save_button = gr.Button("Save Chat History")
download_file = gr.File(label="Download Chat History")
def chat_wrapper(message, history, media_content, selected_parts, api_endpoint, api_key, user_prompt):
print(f"Debug - Chat Wrapper - Message: {message}")
print(f"Debug - Chat Wrapper - Media Content: {media_content}")
print(f"Debug - Chat Wrapper - Selected Parts: {selected_parts}")
print(f"Debug - Chat Wrapper - API Endpoint: {api_endpoint}")
print(f"Debug - Chat Wrapper - User Prompt: {user_prompt}")
selected_content = "\n\n".join(
[f"{part.capitalize()}: {media_content.get(part, '')}" for part in selected_parts if
part in media_content])
print(f"Debug - Chat Wrapper - Selected Content: {selected_content[:500]}...") # Print first 500 chars
context = f"Selected content:\n{selected_content}\n\nUser message: {message}"
print(f"Debug - Chat Wrapper - Context: {context[:500]}...") # Print first 500 chars
# Use a default API endpoint if none is selected
if not api_endpoint:
api_endpoint = "OpenAI" # You can change this to any default endpoint you prefer
print(f"Debug - Chat Wrapper - Using default API Endpoint: {api_endpoint}")
bot_message = chat(context, history, media_content, selected_parts, api_endpoint, api_key, user_prompt)
print(f"Debug - Chat Wrapper - Bot Message: {bot_message[:500]}...") # Print first 500 chars
history.append((message, bot_message))
return "", history
submit.click(
chat_wrapper,
inputs=[msg, chat_history, media_content, selected_parts, api_endpoint, api_key, user_prompt],
outputs=[msg, chatbot]
)
def save_chat_history(history):
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
filename = f"chat_history_{timestamp}.json"
with open(filename, "w") as f:
json.dump(history, f)
return filename
save_button.click(save_chat_history, inputs=[chat_history], outputs=[download_file])
search_button.click(
fn=update_dropdown,
inputs=[search_query_input, search_type_input],
outputs=[items_output, item_mapping]
)
def update_user_prompt(preset_name):
details = fetch_prompt_details(preset_name)
if details:
return details[1] # Return the system prompt
return ""
preset_prompt.change(update_user_prompt, inputs=preset_prompt, outputs=user_prompt)
def update_chat_content(selected_item, use_content, use_summary, use_prompt, item_mapping):
print(f"Debug - Update Chat Content - Selected Item: {selected_item}")
print(f"Debug - Update Chat Content - Use Content: {use_content}")
print(f"Debug - Update Chat Content - Use Summary: {use_summary}")
print(f"Debug - Update Chat Content - Use Prompt: {use_prompt}")
print(f"Debug - Update Chat Content - Item Mapping: {item_mapping}")
if selected_item and selected_item in item_mapping:
media_id = item_mapping[selected_item]
content = load_media_content(media_id)
selected_parts = []
if use_content and "content" in content:
selected_parts.append("content")
if use_summary and "summary" in content:
selected_parts.append("summary")
if use_prompt and "prompt" in content:
selected_parts.append("prompt")
print(f"Debug - Update Chat Content - Content: {content}")
print(f"Debug - Update Chat Content - Selected Parts: {selected_parts}")
return content, selected_parts
else:
print(f"Debug - Update Chat Content - No item selected or item not in mapping")
return {}, []
items_output.change(
update_chat_content,
inputs=[items_output, use_content, use_summary, use_prompt, item_mapping],
outputs=[media_content, selected_parts]
)
def update_selected_parts(use_content, use_summary, use_prompt):
selected_parts = []
if use_content:
selected_parts.append("content")
if use_summary:
selected_parts.append("summary")
if use_prompt:
selected_parts.append("prompt")
print(f"Debug - Update Selected Parts: {selected_parts}")
return selected_parts
use_content.change(update_selected_parts, inputs=[use_content, use_summary, use_prompt],
outputs=[selected_parts])
use_summary.change(update_selected_parts, inputs=[use_content, use_summary, use_prompt],
outputs=[selected_parts])
use_prompt.change(update_selected_parts, inputs=[use_content, use_summary, use_prompt],
outputs=[selected_parts])
def update_selected_parts(use_content, use_summary, use_prompt):
selected_parts = []
if use_content:
selected_parts.append("content")
if use_summary:
selected_parts.append("summary")
if use_prompt:
selected_parts.append("prompt")
print(f"Debug - Update Selected Parts: {selected_parts}")
return selected_parts
use_content.change(update_selected_parts, inputs=[use_content, use_summary, use_prompt],
outputs=[selected_parts])
use_summary.change(update_selected_parts, inputs=[use_content, use_summary, use_prompt],
outputs=[selected_parts])
use_prompt.change(update_selected_parts, inputs=[use_content, use_summary, use_prompt],
outputs=[selected_parts])
# Add debug output
def debug_output(media_content, selected_parts):
print(f"Debug - Media Content: {media_content}")
print(f"Debug - Selected Parts: {selected_parts}")
return ""
items_output.change(debug_output, inputs=[media_content, selected_parts], outputs=[])
#
# End of Chat Interface Tab Functions
################################################################################################################
#
# Media Edit Tab Functions
def create_media_edit_tab():
with gr.TabItem("Edit Existing Items"):
gr.Markdown("# Search and Edit Media Items")
with gr.Row():
search_query_input = gr.Textbox(label="Search Query", placeholder="Enter your search query here...")
search_type_input = gr.Radio(choices=["Title", "URL", "Keyword", "Content"], value="Title", label="Search By")
search_button = gr.Button("Search")
with gr.Row():
items_output = gr.Dropdown(label="Select Item", choices=[], interactive=True)
item_mapping = gr.State({})
content_input = gr.Textbox(label="Edit Content", lines=10)
prompt_input = gr.Textbox(label="Edit Prompt", lines=3)
summary_input = gr.Textbox(label="Edit Summary", lines=5)
update_button = gr.Button("Update Media Content")
status_message = gr.Textbox(label="Status", interactive=False)
search_button.click(
fn=update_dropdown,
inputs=[search_query_input, search_type_input],
outputs=[items_output, item_mapping]
)
def load_selected_media_content(selected_item, item_mapping):
if selected_item and item_mapping and selected_item in item_mapping:
media_id = item_mapping[selected_item]
content, prompt, summary = fetch_item_details(media_id)
return content, prompt, summary
return "No item selected or invalid selection", "", ""
items_output.change(
fn=load_selected_media_content,
inputs=[items_output, item_mapping],
outputs=[content_input, prompt_input, summary_input]
)
update_button.click(
fn=update_media_content,
inputs=[items_output, item_mapping, content_input, prompt_input, summary_input],
outputs=status_message
)
#
#
################################################################################################################
#
# Import Items Tab Functions
def import_data(file, title, author, keywords, custom_prompt, summary, auto_summarize, api_name, api_key):
if file is None:
return "No file uploaded. Please upload a file."
try:
logging.debug(f"File object type: {type(file)}")
logging.debug(f"File object attributes: {dir(file)}")
if hasattr(file, 'name'):
file_name = file.name
else:
file_name = 'unknown_file'
if isinstance(file, str):
# If file is a string, it's likely a file path
file_path = file
with open(file_path, 'r', encoding='utf-8') as f:
file_content = f.read()
elif hasattr(file, 'read'):
# If file has a 'read' method, it's likely a file-like object
file_content = file.read()
if isinstance(file_content, bytes):
file_content = file_content.decode('utf-8')
else:
# If it's neither a string nor a file-like object, try converting it to a string
file_content = str(file)
logging.debug(f"File name: {file_name}")
logging.debug(f"File content (first 100 chars): {file_content[:100]}")
# Create info_dict
info_dict = {
'title': title or 'Untitled',
'uploader': author or 'Unknown',
}
# Create segments (assuming one segment for the entire content)
segments = [{'Text': file_content}]
# Process keywords
keyword_list = [kw.strip() for kw in keywords.split(',') if kw.strip()]
# Handle summarization
if auto_summarize and api_name and api_key:
summary = perform_summarization(api_name, file_content, custom_prompt, api_key)
elif not summary:
summary = "No summary provided"
# Add to database
add_media_to_database(
url=file_name, # Using filename as URL
info_dict=info_dict,
segments=segments,
summary=summary,
keywords=keyword_list,
custom_prompt_input=custom_prompt,
whisper_model="Imported", # Indicating this was an imported file,
media_type = "document"
)
return f"File '{file_name}' successfully imported with title '{title}' and author '{author}'."
except Exception as e:
logging.error(f"Error importing file: {str(e)}")
return f"Error importing file: {str(e)}"
def create_import_item_tab():
with gr.TabItem("Import Items"):
gr.Markdown("# Import a markdown file or text file into the database")
gr.Markdown("...and have it tagged + summarized")
with gr.Row():
import_file = gr.File(label="Upload file for import", file_types=["txt", "md"])
with gr.Row():
title_input = gr.Textbox(label="Title", placeholder="Enter the title of the content")
author_input = gr.Textbox(label="Author", placeholder="Enter the author's name")
with gr.Row():
keywords_input = gr.Textbox(label="Keywords", placeholder="Enter keywords, comma-separated")
custom_prompt_input = gr.Textbox(label="Custom Prompt",
placeholder="Enter a custom prompt for summarization (optional)")
with gr.Row():
summary_input = gr.Textbox(label="Summary",
placeholder="Enter a summary or leave blank for auto-summarization", lines=3)
with gr.Row():
auto_summarize_checkbox = gr.Checkbox(label="Auto-summarize", value=False)
api_name_input = gr.Dropdown(
choices=[None, "Local-LLM", "OpenAI", "Anthropic", "Cohere", "Groq", "DeepSeek", "OpenRouter",
"Llama.cpp", "Kobold", "Ooba", "Tabbyapi", "VLLM", "HuggingFace"],
label="API for Auto-summarization"
)
api_key_input = gr.Textbox(label="API Key", type="password")
with gr.Row():
import_button = gr.Button("Import Data")
with gr.Row():
import_output = gr.Textbox(label="Import Status")
import_button.click(
fn=import_data,
inputs=[import_file, title_input, author_input, keywords_input, custom_prompt_input,
summary_input, auto_summarize_checkbox, api_name_input, api_key_input],
outputs=import_output
)
#
# End of Import Items Tab Functions
################################################################################################################
#
# Export Items Tab Functions
def create_export_tab():
with gr.Tab("Export"):
with gr.Tab("Export Search Results"):
search_query = gr.Textbox(label="Search Query", placeholder="Enter your search query here...")
search_fields = gr.CheckboxGroup(label="Search Fields", choices=["Title", "Content"], value=["Title"])
keyword_input = gr.Textbox(
label="Keyword (Match ALL, can use multiple keywords, separated by ',' (comma) )",
placeholder="Enter keywords here...")
page_input = gr.Number(label="Page", value=1, precision=0)
results_per_file_input = gr.Number(label="Results per File", value=1000, precision=0)
export_format = gr.Radio(label="Export Format", choices=["csv", "markdown"], value="csv")
export_search_button = gr.Button("Export Search Results")
export_search_output = gr.File(label="Download Exported Keywords")
export_search_status = gr.Textbox(label="Export Status")
export_search_button.click(
fn=export_to_file,
inputs=[search_query, search_fields, keyword_input, page_input, results_per_file_input, export_format],
outputs=[export_search_status, export_search_output]
)
#
# End of Export Items Tab Functions
################################################################################################################
#
# Keyword Management Tab Functions
def create_export_keywords_tab():
with gr.Group():
with gr.Tab("Export Keywords"):
export_keywords_button = gr.Button("Export Keywords")
export_keywords_output = gr.File(label="Download Exported Keywords")
export_keywords_status = gr.Textbox(label="Export Status")
export_keywords_button.click(
fn=export_keywords_to_csv,
outputs=[export_keywords_status, export_keywords_output]
)
def create_view_keywords_tab():
with gr.TabItem("View Keywords"):
gr.Markdown("# Browse Keywords")
browse_output = gr.Markdown()
browse_button = gr.Button("View Existing Keywords")
browse_button.click(fn=keywords_browser_interface, outputs=browse_output)
def create_add_keyword_tab():
with gr.TabItem("Add Keywords"):
with gr.Row():
gr.Markdown("# Add Keywords to the Database")
add_input = gr.Textbox(label="Add Keywords (comma-separated)", placeholder="Enter keywords here...")
add_button = gr.Button("Add Keywords")
with gr.Row():
add_output = gr.Textbox(label="Result")
add_button.click(fn=add_keyword, inputs=add_input, outputs=add_output)
def create_delete_keyword_tab():
with gr.Tab("Delete Keywords"):
with gr.Row():
gr.Markdown("# Delete Keywords from the Database")
delete_input = gr.Textbox(label="Delete Keyword", placeholder="Enter keyword to delete here...")
delete_button = gr.Button("Delete Keyword")
with gr.Row():
delete_output = gr.Textbox(label="Result")
delete_button.click(fn=delete_keyword, inputs=delete_input, outputs=delete_output)
#
# End of Keyword Management Tab Functions
################################################################################################################
#
# Utilities Tab Functions
def create_utilities_tab():
with gr.Group():
with gr.Tab("YouTube Video Downloader"):
gr.Markdown(
"<h3>Youtube Video Downloader</h3><p>This Input takes a Youtube URL as input and creates a webm file for you to download. </br><em>If you want a full-featured one:</em> <strong><em>https://github.com/StefanLobbenmeier/youtube-dl-gui</strong></em> or <strong><em>https://github.com/yt-dlg/yt-dlg</em></strong></p>")
youtube_url_input = gr.Textbox(label="YouTube URL", placeholder="Enter YouTube video URL here")
download_button = gr.Button("Download Video")
output_file = gr.File(label="Download Video")
download_button.click(
fn=gradio_download_youtube_video,
inputs=youtube_url_input,
outputs=output_file
)
with gr.Tab("YouTube Audio Downloader"):
gr.Markdown(
"<h3>Youtube Audio Downloader</h3><p>This Input takes a Youtube URL as input and creates an audio file for you to download. </br><em>If you want a full-featured one:</em> <strong><em>https://github.com/StefanLobbenmeier/youtube-dl-gui</strong></em> or <strong><em>https://github.com/yt-dlg/yt-dlg</em></strong></p>")
youtube_url_input_audio = gr.Textbox(label="YouTube URL", placeholder="Enter YouTube video URL here")
download_button_audio = gr.Button("Download Audio")
output_file_audio = gr.File(label="Download Audio")
# Implement the audio download functionality here
with gr.Tab("Grammar Checker"):
gr.Markdown("# Grammar Check Utility to be added...")
with gr.Tab("YouTube Timestamp URL Generator"):
gr.Markdown("## Generate YouTube URL with Timestamp")
with gr.Row():
url_input = gr.Textbox(label="YouTube URL")
hours_input = gr.Number(label="Hours", value=0, minimum=0, precision=0)
minutes_input = gr.Number(label="Minutes", value=0, minimum=0, maximum=59, precision=0)
seconds_input = gr.Number(label="Seconds", value=0, minimum=0, maximum=59, precision=0)
generate_button = gr.Button("Generate URL")
output_url = gr.Textbox(label="Timestamped URL")
generate_button.click(
fn=generate_timestamped_url,
inputs=[url_input, hours_input, minutes_input, seconds_input],
outputs=output_url
)
#
# End of Utilities Tab Functions
################################################################################################################
# FIXME - Prompt sample box
#
# # Sample data
# prompts_category_1 = [
# "What are the key points discussed in the video?",
# "Summarize the main arguments made by the speaker.",
# "Describe the conclusions of the study presented."
# ]
#
# prompts_category_2 = [
# "How does the proposed solution address the problem?",
# "What are the implications of the findings?",
# "Can you explain the theory behind the observed phenomenon?"
# ]
#
# all_prompts2 = prompts_category_1 + prompts_category_2
def launch_ui(share_public=None, server_mode=False):
share=share_public
css = """
.result-box {
margin-bottom: 20px;
border: 1px solid #ddd;
padding: 10px;
}
.result-box.error {
border-color: #ff0000;
background-color: #ffeeee;
}
.transcription, .summary {
max-height: 300px;
overflow-y: auto;
border: 1px solid #eee;
padding: 10px;
margin-top: 10px;
}
"""
with gr.Blocks(css=css) as iface:
gr.Markdown("# TL/DW: Too Long, Didn't Watch - Your Personal Research Multi-Tool")
with gr.Tabs():
with gr.TabItem("Transcription / Summarization / Ingestion"):
with gr.Tabs():
create_video_transcription_tab()
create_audio_processing_tab()
create_podcast_tab()
create_website_scraping_tab()
create_pdf_ingestion_tab()
create_resummary_tab()
with gr.TabItem("Search / Detailed View"):
create_search_tab()
create_prompt_view_tab()
create_prompt_edit_tab()
with gr.TabItem("Local LLM with Llamafile"):
create_llamafile_settings_tab()
with gr.TabItem("Remote LLM Chat"):
create_chat_interface()
with gr.TabItem("Edit Existing Items"):
create_media_edit_tab()
with gr.TabItem("Keywords"):
with gr.Tabs():
create_view_keywords_tab()
create_add_keyword_tab()
create_delete_keyword_tab()
create_export_keywords_tab()
with gr.TabItem("Import/Export"):
create_import_item_tab()
create_export_tab()
with gr.TabItem("Utilities"):
create_utilities_tab()
# Launch the interface
server_port_variable = 7860
if share==True:
iface.launch(share=True)
elif server_mode and not share_public:
iface.launch(share=False, server_name="0.0.0.0", server_port=server_port_variable)
else:
iface.launch(share=False)
|