Spaces:
Running
Running
File size: 7,344 Bytes
ed28876 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 |
# Diarization_Lib.py
#########################################
# Diarization Library
# This library is used to perform diarization of audio files.
# Currently, uses FIXME for transcription.
#
####################
####################
# Function List
#
# 1. speaker_diarize(video_file_path, segments, embedding_model = "pyannote/embedding", embedding_size=512, num_speakers=0)
#
####################
# Import necessary libraries
import configparser
import json
import logging
import os
from pathlib import Path
import time
# Import Local
from App_Function_Libraries.Audio_Transcription_Lib import speech_to_text
#
# Import 3rd Party
from pyannote.audio import Model
from pyannote.audio.pipelines.speaker_diarization import SpeakerDiarization
import torch
import yaml
#
#######################################################################################################################
# Function Definitions
#
def load_pipeline_from_pretrained(path_to_config: str | Path) -> SpeakerDiarization:
path_to_config = Path(path_to_config).resolve()
print(f"Loading pyannote pipeline from {path_to_config}...")
if not path_to_config.exists():
raise FileNotFoundError(f"Config file not found: {path_to_config}")
# Load the YAML configuration
with open(path_to_config, 'r') as config_file:
config = yaml.safe_load(config_file)
# Store current working directory
cwd = Path.cwd().resolve()
# Change to the directory containing the config file
cd_to = path_to_config.parent.resolve()
print(f"Changing working directory to {cd_to}")
os.chdir(cd_to)
try:
# Create a SpeakerDiarization pipeline
pipeline = SpeakerDiarization()
# Load models explicitly from local paths
embedding_path = Path(config['pipeline']['params']['embedding']).resolve()
segmentation_path = Path(config['pipeline']['params']['segmentation']).resolve()
if not embedding_path.exists():
raise FileNotFoundError(f"Embedding model file not found: {embedding_path}")
if not segmentation_path.exists():
raise FileNotFoundError(f"Segmentation model file not found: {segmentation_path}")
# Load the models from local paths using pyannote's Model class
pipeline.embedding = Model.from_pretrained(str(embedding_path), map_location=torch.device('cpu'))
pipeline.segmentation = Model.from_pretrained(str(segmentation_path), map_location=torch.device('cpu'))
# Set other parameters
pipeline.clustering = config['pipeline']['params']['clustering']
pipeline.embedding_batch_size = config['pipeline']['params']['embedding_batch_size']
pipeline.embedding_exclude_overlap = config['pipeline']['params']['embedding_exclude_overlap']
pipeline.segmentation_batch_size = config['pipeline']['params']['segmentation_batch_size']
# Set additional parameters
pipeline.instantiate(config['params'])
finally:
# Change back to the original working directory
print(f"Changing working directory back to {cwd}")
os.chdir(cwd)
return pipeline
def audio_diarization(audio_file_path):
logging.info('audio-diarization: Loading pyannote pipeline')
config = configparser.ConfigParser()
config.read('config.txt')
processing_choice = config.get('Processing', 'processing_choice', fallback='cpu')
base_dir = Path(__file__).parent.resolve()
config_path = base_dir / 'models' / 'config.yaml'
pipeline = load_pipeline_from_pretrained(config_path)
time_start = time.time()
if audio_file_path is None:
raise ValueError("audio-diarization: No audio file provided")
logging.info("audio-diarization: Audio file path: %s", audio_file_path)
try:
_, file_ending = os.path.splitext(audio_file_path)
out_file = audio_file_path.replace(file_ending, ".diarization.json")
prettified_out_file = audio_file_path.replace(file_ending, ".diarization_pretty.json")
if os.path.exists(out_file):
logging.info("audio-diarization: Diarization file already exists: %s", out_file)
with open(out_file) as f:
global diarization_result
diarization_result = json.load(f)
return diarization_result
logging.info('audio-diarization: Starting diarization...')
diarization_result = pipeline(audio_file_path)
segments = []
for turn, _, speaker in diarization_result.itertracks(yield_label=True):
chunk = {
"Time_Start": turn.start,
"Time_End": turn.end,
"Speaker": speaker
}
logging.debug("Segment: %s", chunk)
segments.append(chunk)
logging.info("audio-diarization: Diarization completed with pyannote")
output_data = {'segments': segments}
logging.info("audio-diarization: Saving prettified JSON to %s", prettified_out_file)
with open(prettified_out_file, 'w') as f:
json.dump(output_data, f, indent=2)
logging.info("audio-diarization: Saving JSON to %s", out_file)
with open(out_file, 'w') as f:
json.dump(output_data, f)
except Exception as e:
logging.error("audio-diarization: Error performing diarization: %s", str(e))
raise RuntimeError("audio-diarization: Error performing diarization")
return segments
def combine_transcription_and_diarization(audio_file_path):
logging.info('combine-transcription-and-diarization: Starting transcription and diarization...')
transcription_result = speech_to_text(audio_file_path)
diarization_result = audio_diarization(audio_file_path)
combined_result = []
for transcription_segment in transcription_result:
for diarization_segment in diarization_result:
if transcription_segment['Time_Start'] >= diarization_segment['Time_Start'] and transcription_segment[
'Time_End'] <= diarization_segment['Time_End']:
combined_segment = {
"Time_Start": transcription_segment['Time_Start'],
"Time_End": transcription_segment['Time_End'],
"Speaker": diarization_segment['Speaker'],
"Text": transcription_segment['Text']
}
combined_result.append(combined_segment)
break
_, file_ending = os.path.splitext(audio_file_path)
out_file = audio_file_path.replace(file_ending, ".combined.json")
prettified_out_file = audio_file_path.replace(file_ending, ".combined_pretty.json")
logging.info("combine-transcription-and-diarization: Saving prettified JSON to %s", prettified_out_file)
with open(prettified_out_file, 'w') as f:
json.dump(combined_result, f, indent=2)
logging.info("combine-transcription-and-diarization: Saving JSON to %s", out_file)
with open(out_file, 'w') as f:
json.dump(combined_result, f)
return combined_result
#
#
####################################################################################################################### |