Spaces:
Running
Running
File size: 32,625 Bytes
43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 |
# Article_Extractor_Lib.py
#########################################
# Article Extraction Library
# This library is used to handle scraping and extraction of articles from web pages.
#
####################
# Function List
#
# 1. get_page_title(url)
# 2. get_article_text(url)
# 3. get_article_title(article_url_arg)
#
####################
#
# Import necessary libraries
import hashlib
from datetime import datetime
import json
import logging
import os
import tempfile
from typing import Any, Dict, List, Union, Optional, Tuple
#
# 3rd-Party Imports
import asyncio
from urllib.parse import urljoin, urlparse
from xml.dom import minidom
import xml.etree.ElementTree as ET
#
# External Libraries
from bs4 import BeautifulSoup
import pandas as pd
from playwright.async_api import async_playwright
import requests
import trafilatura
#
# Import Local
from App_Function_Libraries.DB.DB_Manager import ingest_article_to_db
from App_Function_Libraries.Summarization.Summarization_General_Lib import summarize
#######################################################################################################################
# Function Definitions
#
#################################################################
#
# Scraping-related functions:
def get_page_title(url: str) -> str:
try:
response = requests.get(url)
response.raise_for_status()
soup = BeautifulSoup(response.text, 'html.parser')
title_tag = soup.find('title')
return title_tag.string.strip() if title_tag else "Untitled"
except requests.RequestException as e:
logging.error(f"Error fetching page title: {e}")
return "Untitled"
async def scrape_article(url: str, custom_cookies: Optional[List[Dict[str, Any]]] = None) -> Dict[str, Any]:
async def fetch_html(url: str) -> str:
async with async_playwright() as p:
browser = await p.chromium.launch(headless=True)
context = await browser.new_context(
user_agent="Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3"
)
if custom_cookies:
await context.add_cookies(custom_cookies)
page = await context.new_page()
await page.goto(url)
await page.wait_for_load_state("networkidle")
content = await page.content()
await browser.close()
return content
def extract_article_data(html: str, url: str) -> dict:
# FIXME - Add option for extracting comments/tables/images
downloaded = trafilatura.extract(html, include_comments=False, include_tables=False, include_images=False)
metadata = trafilatura.extract_metadata(html)
result = {
'title': 'N/A',
'author': 'N/A',
'content': '',
'date': 'N/A',
'url': url,
'extraction_successful': False
}
if downloaded:
# Add metadata to content
result['content'] = ContentMetadataHandler.format_content_with_metadata(
url=url,
content=downloaded,
pipeline="Trafilatura",
additional_metadata={
"extracted_date": metadata.date if metadata and metadata.date else 'N/A',
"author": metadata.author if metadata and metadata.author else 'N/A'
}
)
result['extraction_successful'] = True
if metadata:
result.update({
'title': metadata.title if metadata.title else 'N/A',
'author': metadata.author if metadata.author else 'N/A',
'date': metadata.date if metadata.date else 'N/A'
})
else:
logging.warning("Metadata extraction failed.")
if not downloaded:
logging.warning("Content extraction failed.")
return result
def convert_html_to_markdown(html: str) -> str:
soup = BeautifulSoup(html, 'html.parser')
for para in soup.find_all('p'):
# Add a newline at the end of each paragraph for markdown separation
para.append('\n')
# Use .get_text() with separator to keep paragraph separation
return soup.get_text(separator='\n\n')
html = await fetch_html(url)
article_data = extract_article_data(html, url)
if article_data['extraction_successful']:
article_data['content'] = convert_html_to_markdown(article_data['content'])
return article_data
async def scrape_and_summarize_multiple(
urls: str,
custom_prompt_arg: Optional[str],
api_name: str,
api_key: Optional[str],
keywords: str,
custom_article_titles: Optional[str],
system_message: Optional[str] = None,
summarize_checkbox: bool = False,
custom_cookies: Optional[List[Dict[str, Any]]] = None,
temperature: float = 0.7
) -> List[Dict[str, Any]]:
urls_list = [url.strip() for url in urls.split('\n') if url.strip()]
custom_titles = custom_article_titles.split('\n') if custom_article_titles else []
results = []
errors = []
# Loop over each URL to scrape and optionally summarize
for i, url in enumerate(urls_list):
custom_title = custom_titles[i] if i < len(custom_titles) else None
try:
# Scrape the article
article = await scrape_article(url, custom_cookies=custom_cookies)
if article and article['extraction_successful']:
if custom_title:
article['title'] = custom_title
# If summarization is requested
if summarize_checkbox:
content = article.get('content', '')
if content:
# Prepare prompts
system_message_final = system_message or "Act as a professional summarizer and summarize this article."
article_custom_prompt = custom_prompt_arg or "Act as a professional summarizer and summarize this article."
# Summarize the content using the summarize function
summary = summarize(
input_data=content,
custom_prompt_arg=article_custom_prompt,
api_name=api_name,
api_key=api_key,
temp=temperature,
system_message=system_message_final
)
article['summary'] = summary
logging.info(f"Summary generated for URL {url}")
else:
article['summary'] = "No content available to summarize."
logging.warning(f"No content to summarize for URL {url}")
else:
article['summary'] = None
results.append(article)
else:
error_message = f"Extraction unsuccessful for URL {url}"
errors.append(error_message)
logging.error(error_message)
except Exception as e:
error_message = f"Error processing URL {i + 1} ({url}): {str(e)}"
errors.append(error_message)
logging.error(error_message, exc_info=True)
if errors:
logging.error("\n".join(errors))
if not results:
logging.error("No articles were successfully scraped and summarized/analyzed.")
return []
return results
def scrape_and_no_summarize_then_ingest(url, keywords, custom_article_title):
try:
# Step 1: Scrape the article
article_data = asyncio.run(scrape_article(url))
print(f"Scraped Article Data: {article_data}") # Debugging statement
if not article_data:
return "Failed to scrape the article."
# Use the custom title if provided, otherwise use the scraped title
title = custom_article_title.strip() if custom_article_title else article_data.get('title', 'Untitled')
author = article_data.get('author', 'Unknown')
content = article_data.get('content', '')
ingestion_date = datetime.now().strftime('%Y-%m-%d')
print(f"Title: {title}, Author: {author}, Content Length: {len(content)}") # Debugging statement
# Step 2: Ingest the article into the database
ingestion_result = ingest_article_to_db(url, title, author, content, keywords, ingestion_date, None, None)
# When displaying content, we might want to strip metadata
display_content = ContentMetadataHandler.strip_metadata(content)
return f"Title: {title}\nAuthor: {author}\nIngestion Result: {ingestion_result}\n\nArticle Contents: {display_content}"
except Exception as e:
logging.error(f"Error processing URL {url}: {str(e)}")
return f"Failed to process URL {url}: {str(e)}"
def scrape_from_filtered_sitemap(sitemap_file: str, filter_function) -> list:
"""
Scrape articles from a sitemap file, applying an additional filter function.
:param sitemap_file: Path to the sitemap file
:param filter_function: A function that takes a URL and returns True if it should be scraped
:return: List of scraped articles
"""
try:
tree = ET.parse(sitemap_file)
root = tree.getroot()
articles = []
for url in root.findall('.//{http://www.sitemaps.org/schemas/sitemap/0.9}loc'):
if filter_function(url.text):
article_data = scrape_article(url.text)
if article_data:
articles.append(article_data)
return articles
except ET.ParseError as e:
logging.error(f"Error parsing sitemap: {e}")
return []
def is_content_page(url: str) -> bool:
"""
Determine if a URL is likely to be a content page.
This is a basic implementation and may need to be adjusted based on the specific website structure.
:param url: The URL to check
:return: True if the URL is likely a content page, False otherwise
"""
#Add more specific checks here based on the website's structure
# Exclude common non-content pages
exclude_patterns = [
'/tag/', '/category/', '/author/', '/search/', '/page/',
'wp-content', 'wp-includes', 'wp-json', 'wp-admin',
'login', 'register', 'cart', 'checkout', 'account',
'.jpg', '.png', '.gif', '.pdf', '.zip'
]
return not any(pattern in url.lower() for pattern in exclude_patterns)
def scrape_and_convert_with_filter(source: str, output_file: str, filter_function=is_content_page, level: int = None):
"""
Scrape articles from a sitemap or by URL level, apply filtering, and convert to a single markdown file.
:param source: URL of the sitemap, base URL for level-based scraping, or path to a local sitemap file
:param output_file: Path to save the output markdown file
:param filter_function: Function to filter URLs (default is is_content_page)
:param level: URL level for scraping (None if using sitemap)
"""
if level is not None:
# Scraping by URL level
articles = scrape_by_url_level(source, level)
articles = [article for article in articles if filter_function(article['url'])]
elif source.startswith('http'):
# Scraping from online sitemap
articles = scrape_from_sitemap(source)
articles = [article for article in articles if filter_function(article['url'])]
else:
# Scraping from local sitemap file
articles = scrape_from_filtered_sitemap(source, filter_function)
articles = [article for article in articles if filter_function(article['url'])]
markdown_content = convert_to_markdown(articles)
with open(output_file, 'w', encoding='utf-8') as f:
f.write(markdown_content)
logging.info(f"Scraped and filtered content saved to {output_file}")
async def scrape_entire_site(base_url: str) -> List[Dict]:
"""
Scrape the entire site by generating a temporary sitemap and extracting content from each page.
:param base_url: The base URL of the site to scrape
:return: A list of dictionaries containing scraped article data
"""
# Step 1: Collect internal links from the site
links = collect_internal_links(base_url)
logging.info(f"Collected {len(links)} internal links.")
# Step 2: Generate the temporary sitemap
temp_sitemap_path = generate_temp_sitemap_from_links(links)
# Step 3: Scrape each URL in the sitemap
scraped_articles = []
try:
async def scrape_and_log(link):
logging.info(f"Scraping {link} ...")
article_data = await scrape_article(link)
if article_data:
logging.info(f"Title: {article_data['title']}")
logging.info(f"Author: {article_data['author']}")
logging.info(f"Date: {article_data['date']}")
logging.info(f"Content: {article_data['content'][:500]}...")
return article_data
return None
# Use asyncio.gather to scrape multiple articles concurrently
scraped_articles = await asyncio.gather(*[scrape_and_log(link) for link in links])
# Remove any None values (failed scrapes)
scraped_articles = [article for article in scraped_articles if article is not None]
finally:
# Clean up the temporary sitemap file
os.unlink(temp_sitemap_path)
logging.info("Temporary sitemap file deleted")
return scraped_articles
def scrape_by_url_level(base_url: str, level: int) -> list:
"""Scrape articles from URLs up to a certain level under the base URL."""
def get_url_level(url: str) -> int:
return len(urlparse(url).path.strip('/').split('/'))
links = collect_internal_links(base_url)
filtered_links = [link for link in links if get_url_level(link) <= level]
return [article for link in filtered_links if (article := scrape_article(link))]
def scrape_from_sitemap(sitemap_url: str) -> list:
"""Scrape articles from a sitemap URL."""
try:
response = requests.get(sitemap_url)
response.raise_for_status()
root = ET.fromstring(response.content)
return [article for url in root.findall('.//{http://www.sitemaps.org/schemas/sitemap/0.9}loc')
if (article := scrape_article(url.text))]
except requests.RequestException as e:
logging.error(f"Error fetching sitemap: {e}")
return []
#
# End of Scraping Functions
#######################################################
#
# Sitemap/Crawling-related Functions
def collect_internal_links(base_url: str) -> set:
visited = set()
to_visit = {base_url}
while to_visit:
current_url = to_visit.pop()
if current_url in visited:
continue
try:
response = requests.get(current_url)
response.raise_for_status()
soup = BeautifulSoup(response.text, 'html.parser')
# Collect internal links
for link in soup.find_all('a', href=True):
full_url = urljoin(base_url, link['href'])
# Only process links within the same domain
if urlparse(full_url).netloc == urlparse(base_url).netloc:
if full_url not in visited:
to_visit.add(full_url)
visited.add(current_url)
except requests.RequestException as e:
logging.error(f"Error visiting {current_url}: {e}")
continue
return visited
def generate_temp_sitemap_from_links(links: set) -> str:
"""
Generate a temporary sitemap file from collected links and return its path.
:param links: A set of URLs to include in the sitemap
:return: Path to the temporary sitemap file
"""
# Create the root element
urlset = ET.Element("urlset")
urlset.set("xmlns", "http://www.sitemaps.org/schemas/sitemap/0.9")
# Add each link to the sitemap
for link in links:
url = ET.SubElement(urlset, "url")
loc = ET.SubElement(url, "loc")
loc.text = link
lastmod = ET.SubElement(url, "lastmod")
lastmod.text = datetime.now().strftime("%Y-%m-%d")
changefreq = ET.SubElement(url, "changefreq")
changefreq.text = "daily"
priority = ET.SubElement(url, "priority")
priority.text = "0.5"
# Create the tree and get it as a string
xml_string = ET.tostring(urlset, 'utf-8')
# Pretty print the XML
pretty_xml = minidom.parseString(xml_string).toprettyxml(indent=" ")
# Create a temporary file
with tempfile.NamedTemporaryFile(mode="w", suffix=".xml", delete=False) as temp_file:
temp_file.write(pretty_xml)
temp_file_path = temp_file.name
logging.info(f"Temporary sitemap created at: {temp_file_path}")
return temp_file_path
def generate_sitemap_for_url(url: str) -> List[Dict[str, str]]:
"""
Generate a sitemap for the given URL using the create_filtered_sitemap function.
Args:
url (str): The base URL to generate the sitemap for
Returns:
List[Dict[str, str]]: A list of dictionaries, each containing 'url' and 'title' keys
"""
with tempfile.NamedTemporaryFile(mode="w+", suffix=".xml", delete=False) as temp_file:
create_filtered_sitemap(url, temp_file.name, is_content_page)
temp_file.seek(0)
tree = ET.parse(temp_file.name)
root = tree.getroot()
sitemap = []
for url_elem in root.findall(".//{http://www.sitemaps.org/schemas/sitemap/0.9}url"):
loc = url_elem.find("{http://www.sitemaps.org/schemas/sitemap/0.9}loc").text
sitemap.append({"url": loc, "title": loc.split("/")[-1] or url}) # Use the last part of the URL as a title
return sitemap
def create_filtered_sitemap(base_url: str, output_file: str, filter_function):
"""
Create a sitemap from internal links and filter them based on a custom function.
:param base_url: The base URL of the website
:param output_file: The file to save the sitemap to
:param filter_function: A function that takes a URL and returns True if it should be included
"""
links = collect_internal_links(base_url)
filtered_links = set(filter(filter_function, links))
root = ET.Element("urlset")
root.set("xmlns", "http://www.sitemaps.org/schemas/sitemap/0.9")
for link in filtered_links:
url = ET.SubElement(root, "url")
loc = ET.SubElement(url, "loc")
loc.text = link
tree = ET.ElementTree(root)
tree.write(output_file, encoding='utf-8', xml_declaration=True)
print(f"Filtered sitemap saved to {output_file}")
#
# End of Crawling Functions
#################################################################
#
# Utility Functions
def convert_to_markdown(articles: list) -> str:
"""Convert a list of article data into a single markdown document."""
markdown = ""
for article in articles:
markdown += f"# {article['title']}\n\n"
markdown += f"Author: {article['author']}\n"
markdown += f"Date: {article['date']}\n\n"
markdown += f"{article['content']}\n\n"
markdown += "---\n\n" # Separator between articles
return markdown
def compute_content_hash(content: str) -> str:
return hashlib.sha256(content.encode('utf-8')).hexdigest()
def load_hashes(filename: str) -> Dict[str, str]:
if os.path.exists(filename):
with open(filename, 'r') as f:
return json.load(f)
else:
return {}
def save_hashes(hashes: Dict[str, str], filename: str):
with open(filename, 'w') as f:
json.dump(hashes, f)
def has_page_changed(url: str, new_hash: str, stored_hashes: Dict[str, str]) -> bool:
old_hash = stored_hashes.get(url)
return old_hash != new_hash
#
#
###################################################
#
# Bookmark Parsing Functions
def parse_chromium_bookmarks(json_data: dict) -> Dict[str, Union[str, List[str]]]:
"""
Parse Chromium-based browser bookmarks from JSON data.
:param json_data: The JSON data from the bookmarks file
:return: A dictionary with bookmark names as keys and URLs as values or lists of URLs if duplicates exist
"""
bookmarks = {}
def recurse_bookmarks(nodes):
for node in nodes:
if node.get('type') == 'url':
name = node.get('name')
url = node.get('url')
if name and url:
if name in bookmarks:
if isinstance(bookmarks[name], list):
bookmarks[name].append(url)
else:
bookmarks[name] = [bookmarks[name], url]
else:
bookmarks[name] = url
elif node.get('type') == 'folder' and 'children' in node:
recurse_bookmarks(node['children'])
# Chromium bookmarks have a 'roots' key
if 'roots' in json_data:
for root in json_data['roots'].values():
if 'children' in root:
recurse_bookmarks(root['children'])
else:
recurse_bookmarks(json_data.get('children', []))
return bookmarks
def parse_firefox_bookmarks(html_content: str) -> Dict[str, Union[str, List[str]]]:
"""
Parse Firefox bookmarks from HTML content.
:param html_content: The HTML content from the bookmarks file
:return: A dictionary with bookmark names as keys and URLs as values or lists of URLs if duplicates exist
"""
bookmarks = {}
soup = BeautifulSoup(html_content, 'html.parser')
# Firefox stores bookmarks within <a> tags inside <dt>
for a in soup.find_all('a'):
name = a.get_text()
url = a.get('href')
if name and url:
if name in bookmarks:
if isinstance(bookmarks[name], list):
bookmarks[name].append(url)
else:
bookmarks[name] = [bookmarks[name], url]
else:
bookmarks[name] = url
return bookmarks
def load_bookmarks(file_path: str) -> Dict[str, Union[str, List[str]]]:
"""
Load bookmarks from a file (JSON for Chrome/Edge or HTML for Firefox).
:param file_path: Path to the bookmarks file
:return: A dictionary with bookmark names as keys and URLs as values or lists of URLs if duplicates exist
:raises ValueError: If the file format is unsupported or parsing fails
"""
if not os.path.isfile(file_path):
logging.error(f"File '{file_path}' does not exist.")
raise FileNotFoundError(f"File '{file_path}' does not exist.")
_, ext = os.path.splitext(file_path)
ext = ext.lower()
if ext == '.json' or ext == '':
# Attempt to parse as JSON (Chrome/Edge)
try:
with open(file_path, 'r', encoding='utf-8') as f:
json_data = json.load(f)
return parse_chromium_bookmarks(json_data)
except json.JSONDecodeError:
logging.error("Failed to parse JSON. Ensure the file is a valid Chromium bookmarks JSON file.")
raise ValueError("Invalid JSON format for Chromium bookmarks.")
elif ext in ['.html', '.htm']:
# Parse as HTML (Firefox)
try:
with open(file_path, 'r', encoding='utf-8') as f:
html_content = f.read()
return parse_firefox_bookmarks(html_content)
except Exception as e:
logging.error(f"Failed to parse HTML bookmarks: {e}")
raise ValueError(f"Failed to parse HTML bookmarks: {e}")
else:
logging.error("Unsupported file format. Please provide a JSON (Chrome/Edge) or HTML (Firefox) bookmarks file.")
raise ValueError("Unsupported file format for bookmarks.")
def collect_bookmarks(file_path: str) -> Dict[str, Union[str, List[str]]]:
"""
Collect bookmarks from the provided bookmarks file and return a dictionary.
:param file_path: Path to the bookmarks file
:return: Dictionary with bookmark names as keys and URLs as values or lists of URLs if duplicates exist
"""
try:
bookmarks = load_bookmarks(file_path)
logging.info(f"Successfully loaded {len(bookmarks)} bookmarks from '{file_path}'.")
return bookmarks
except (FileNotFoundError, ValueError) as e:
logging.error(f"Error loading bookmarks: {e}")
return {}
def parse_csv_urls(file_path: str) -> Dict[str, Union[str, List[str]]]:
"""
Parse URLs from a CSV file. The CSV should have at minimum a 'url' column,
and optionally a 'title' or 'name' column.
:param file_path: Path to the CSV file
:return: Dictionary with titles/names as keys and URLs as values
"""
try:
# Read CSV file
df = pd.read_csv(file_path)
# Check if required columns exist
if 'url' not in df.columns:
raise ValueError("CSV must contain a 'url' column")
# Initialize result dictionary
urls_dict = {}
# Determine which column to use as key
key_column = next((col for col in ['title', 'name'] if col in df.columns), None)
for idx in range(len(df)):
url = df.iloc[idx]['url'].strip()
# Use title/name if available, otherwise use URL as key
if key_column:
key = df.iloc[idx][key_column].strip()
else:
key = f"Article {idx + 1}"
# Handle duplicate keys
if key in urls_dict:
if isinstance(urls_dict[key], list):
urls_dict[key].append(url)
else:
urls_dict[key] = [urls_dict[key], url]
else:
urls_dict[key] = url
return urls_dict
except pd.errors.EmptyDataError:
logging.error("The CSV file is empty")
return {}
except Exception as e:
logging.error(f"Error parsing CSV file: {str(e)}")
return {}
def collect_urls_from_file(file_path: str) -> Dict[str, Union[str, List[str]]]:
"""
Unified function to collect URLs from either bookmarks or CSV files.
:param file_path: Path to the file (bookmarks or CSV)
:return: Dictionary with names as keys and URLs as values
"""
_, ext = os.path.splitext(file_path)
ext = ext.lower()
if ext == '.csv':
return parse_csv_urls(file_path)
else:
return collect_bookmarks(file_path)
# Usage:
# from Article_Extractor_Lib import collect_bookmarks
#
# # Path to your bookmarks file
# # For Chrome or Edge (JSON format)
# chromium_bookmarks_path = "/path/to/Bookmarks"
#
# # For Firefox (HTML format)
# firefox_bookmarks_path = "/path/to/bookmarks.html"
#
# # Collect bookmarks from Chromium-based browser
# chromium_bookmarks = collect_bookmarks(chromium_bookmarks_path)
# print("Chromium Bookmarks:")
# for name, url in chromium_bookmarks.items():
# print(f"{name}: {url}")
#
# # Collect bookmarks from Firefox
# firefox_bookmarks = collect_bookmarks(firefox_bookmarks_path)
# print("\nFirefox Bookmarks:")
# for name, url in firefox_bookmarks.items():
# print(f"{name}: {url}")
#
# End of Bookmarking Parsing Functions
#####################################################################
#####################################################################
#
# Article Scraping Metadata Functions
class ContentMetadataHandler:
"""Handles the addition and parsing of metadata for scraped content."""
METADATA_START = "[METADATA]"
METADATA_END = "[/METADATA]"
@staticmethod
def format_content_with_metadata(
url: str,
content: str,
pipeline: str = "Trafilatura",
additional_metadata: Optional[Dict[str, Any]] = None
) -> str:
"""
Format content with metadata header.
Args:
url: The source URL
content: The scraped content
pipeline: The scraping pipeline used
additional_metadata: Optional dictionary of additional metadata to include
Returns:
Formatted content with metadata header
"""
metadata = {
"url": url,
"ingestion_date": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
"content_hash": hashlib.sha256(content.encode('utf-8')).hexdigest(),
"scraping_pipeline": pipeline
}
# Add any additional metadata
if additional_metadata:
metadata.update(additional_metadata)
formatted_content = f"""{ContentMetadataHandler.METADATA_START}
{json.dumps(metadata, indent=2)}
{ContentMetadataHandler.METADATA_END}
{content}"""
return formatted_content
@staticmethod
def extract_metadata(content: str) -> Tuple[Dict[str, Any], str]:
"""
Extract metadata and content separately.
Args:
content: The full content including metadata
Returns:
Tuple of (metadata dict, clean content)
"""
try:
metadata_start = content.index(ContentMetadataHandler.METADATA_START) + len(
ContentMetadataHandler.METADATA_START)
metadata_end = content.index(ContentMetadataHandler.METADATA_END)
metadata_json = content[metadata_start:metadata_end].strip()
metadata = json.loads(metadata_json)
clean_content = content[metadata_end + len(ContentMetadataHandler.METADATA_END):].strip()
return metadata, clean_content
except (ValueError, json.JSONDecodeError) as e:
return {}, content
@staticmethod
def has_metadata(content: str) -> bool:
"""
Check if content contains metadata.
Args:
content: The content to check
Returns:
bool: True if metadata is present
"""
return (ContentMetadataHandler.METADATA_START in content and
ContentMetadataHandler.METADATA_END in content)
@staticmethod
def strip_metadata(content: str) -> str:
"""
Remove metadata from content if present.
Args:
content: The content to strip metadata from
Returns:
Content without metadata
"""
try:
metadata_end = content.index(ContentMetadataHandler.METADATA_END)
return content[metadata_end + len(ContentMetadataHandler.METADATA_END):].strip()
except ValueError:
return content
@staticmethod
def get_content_hash(content: str) -> str:
"""
Get hash of content without metadata.
Args:
content: The content to hash
Returns:
SHA-256 hash of the clean content
"""
clean_content = ContentMetadataHandler.strip_metadata(content)
return hashlib.sha256(clean_content.encode('utf-8')).hexdigest()
@staticmethod
def content_changed(old_content: str, new_content: str) -> bool:
"""
Check if content has changed by comparing hashes.
Args:
old_content: Previous version of content
new_content: New version of content
Returns:
bool: True if content has changed
"""
old_hash = ContentMetadataHandler.get_content_hash(old_content)
new_hash = ContentMetadataHandler.get_content_hash(new_content)
return old_hash != new_hash
#
# End of Article_Extractor_Lib.py
#######################################################################################################################
|