Spaces:
Running
Running
File size: 16,379 Bytes
43cd37c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 |
# Script taken from: https://github.com/chigkim/Ollama-MMLU-Pro
# No changes made
import os
import re
import json
import time
import random
from tqdm import tqdm
from openai import OpenAI
from datasets import load_dataset
from concurrent.futures import ThreadPoolExecutor, as_completed
import threading
from datetime import datetime, timedelta
import codecs
import toml
import argparse
import queue
import numpy as np
import copy
parser = argparse.ArgumentParser(
prog="python3 run_openai.py",
description="Run MMLU Pro Benchmark for a local LLM via OpenAI Compatible API.",
epilog="Specify options above to override one or more settings from config.",
)
parser.add_argument(
"-c",
"--config",
help="Configuration file. Default=config.toml",
default="config.toml",
)
parser.add_argument(
"-u",
"--url",
help="server url",
)
parser.add_argument("-a", "--api", help="api key")
parser.add_argument("-m", "--model", help="Model name")
parser.add_argument(
"--timeout",
type=float,
help="Request timeout in seconds",
)
parser.add_argument("--category", type=str)
parser.add_argument("-p", "--parallel", type=int, help="Number of parallel requests")
parser.add_argument("-v", "--verbosity", type=int, help="Verbosity level 0-2")
parser.add_argument(
"--log_prompt",
help="Writes exact prompt and response into log.txt",
action="store_true",
)
parser.add_argument(
"--comment", type=str, help="Comment to be included in the final report."
)
args = parser.parse_args()
config = toml.load(open(args.config))
if args.url:
config["server"]["url"] = args.url
if args.api:
config["server"]["api_key"] = args.api
if args.model:
config["server"]["model"] = args.model
if args.timeout:
config["server"]["timeout"] = args.timeout
if args.category:
config["test"]["categories"] = [args.category]
if args.parallel:
config["test"]["parallel"] = args.parallel
if args.verbosity:
config["log"]["verbosity"] = args.verbosity
if args.log_prompt:
config["log"]["log_prompt"] = args.log_prompt
if args.comment:
config["comment"] = args.comment
client = OpenAI(
base_url=config["server"]["url"],
api_key=config["server"]["api_key"],
timeout=config["server"]["timeout"],
)
def log(message):
print(message)
with codecs.open(log_path, "a", "utf-8") as file:
file.write(message + "\n")
def get_chat_completion(messages):
try:
response = client.chat.completions.create(
model=config["server"]["model"],
messages=messages,
temperature=config["inference"]["temperature"],
max_tokens=config["inference"]["max_tokens"],
top_p=config["inference"]["top_p"],
frequency_penalty=0,
presence_penalty=0,
stop=["Question:"],
timeout=config["server"]["timeout"],
)
try:
usage_q.put(
(response.usage.prompt_tokens, response.usage.completion_tokens)
)
except:
pass
return response.choices[0].message.content.strip()
except Exception as e:
print("Resubmitting, Error: ", e)
time.sleep(3)
return get_chat_completion(messages)
def get_completion(prompt):
try:
response = client.completions.create(
model=config["server"]["model"],
prompt=prompt,
temperature=config["inference"]["temperature"],
max_tokens=config["inference"]["max_tokens"],
top_p=config["inference"]["top_p"],
frequency_penalty=0,
presence_penalty=0,
stop=["Question:"],
timeout=config["server"]["timeout"],
)
try:
usage_q.put(
(response.usage.prompt_tokens, response.usage.completion_tokens)
)
except:
pass
if response.choices:
return response.choices[0].text.strip()
elif response.content:
return response.content.strip()
print("Can't get response.")
return None
except Exception as e:
print("Resubmitting, Error: ", e)
time.sleep(3)
return get_completion(prompt)
def load_mmlu_pro():
dataset = load_dataset("TIGER-Lab/MMLU-Pro")
test_df, val_df = dataset["test"], dataset["validation"]
test_df = preprocess(test_df)
val_df = preprocess(val_df)
return test_df, val_df
def preprocess(test_df):
res_df = []
for each in test_df:
options = []
for opt in each["options"]:
if opt == "N/A":
continue
options.append(opt)
each["options"] = options
res_df.append(each)
res = {}
for each in res_df:
if each["category"] not in res:
res[each["category"]] = []
res[each["category"]].append(each)
return res
def format_example(question, options, cot_content=""):
if cot_content == "":
cot_content = "Let's think step by step."
if cot_content.startswith("A: "):
cot_content = cot_content[3:]
example = "Question: {}\nOptions: ".format(question)
choice_map = "ABCDEFGHIJ"
for i, opt in enumerate(options):
example += "{}. {}\n".format(choice_map[i], opt)
return example.strip(), cot_content.strip()
def multi_chat_prompt(cot_examples, question, options):
messages = [
{
"role": "system",
"content": config["inference"]["system_prompt"],
},
]
for each in cot_examples:
example, cot_content = format_example(
each["question"], each["options"], each["cot_content"]
)
messages.append({"role": "user", "content": example})
messages.append({"role": "assistant", "content": "Answer: " + cot_content})
example, cot_content = format_example(question, options)
messages.append({"role": "user", "content": example})
return messages
def single_chat_prompt(cot_examples, question, options):
messages = [
{
"role": "system",
"content": config["inference"]["system_prompt"],
},
]
prompt = no_chat_prompt(cot_examples, question, options, no_system=True)
messages.append({"role": "user", "content": prompt})
return messages
def no_chat_prompt(cot_examples, question, options, no_system=False):
prompt = config["inference"]["system_prompt"] + "\n\n"
if no_system:
prompt = ""
for each in cot_examples:
example, cot_content = format_example(
each["question"], each["options"], each["cot_content"]
)
prompt += example + "\n"
prompt += "Answer: " + cot_content + "\n\n"
example, cot_content = format_example(question, options)
prompt += example + "\n"
prompt += "Answer: " + cot_content
return prompt
def extract_answer(text):
pattern = r"answer is \(?([ABCDEFGHIJ])\)?"
match = re.search(pattern, text)
if match:
return match.group(1)
else:
return extract_again(text)
def extract_again(text):
pattern = r".*[aA]nswer:\s*\(?([A-J])\)?"
match = re.search(pattern, text)
if match:
return match.group(1)
else:
return extract_final(text)
def extract_final(text):
pattern = r"\b[A-J]\b(?!.*\b[A-J]\b)"
match = re.search(pattern, text, re.DOTALL)
if match:
return match[0]
else:
if config["log"]["verbosity"] >= 1:
print("Extraction failed:\n", text)
return None
def run_single_question(single_question, cot_examples_dict, exist_result):
exist = True
q_id = single_question["question_id"]
for each in exist_result:
if (
q_id == each["question_id"]
and single_question["question"] == each["question"]
):
if config["log"]["verbosity"] >= 1:
print("already exists, skipping.")
return None, None, None, exist
exist = False
category = single_question["category"]
cot_examples = cot_examples_dict[category]
question = single_question["question"]
options = single_question["options"]
try:
if config["inference"]["style"] == "single_chat":
prompt = single_chat_prompt(cot_examples, question, options)
response = get_chat_completion(prompt)
elif config["inference"]["style"] == "multi_chat":
prompt = multi_chat_prompt(cot_examples, question, options)
response = get_chat_completion(prompt)
elif config["inference"]["style"] == "no_chat":
prompt = no_chat_prompt(cot_examples, question, options)
response = get_completion(prompt)
except Exception as e:
print("error", e)
return None, None, None, exist
pred = extract_answer(response)
return prompt, response, pred, exist
def update_result(output_res_path, lock):
category_record = {}
res = []
success = False
while not success:
try:
if os.path.exists(output_res_path):
with lock:
with open(output_res_path, "r") as fi:
res = json.load(fi)
for each in res:
category = each["category"]
if category not in category_record:
category_record[category] = {"corr": 0.0, "wrong": 0.0}
category_record["random"] = {"corr": 0.0, "wrong": 0.0}
if not each["pred"]:
random.seed(12345)
x = random.randint(0, len(each["options"]) - 1)
if x == each["answer_index"]:
category_record[category]["corr"] += 1
category_record["random"]["corr"] += 1
else:
category_record[category]["wrong"] += 1
category_record["random"]["wrong"] += 1
elif each["pred"] == each["answer"]:
category_record[category]["corr"] += 1
else:
category_record[category]["wrong"] += 1
success = True
except Exception as e:
print("Error", e)
return res, category_record
def evaluate(subjects):
test_df, dev_df = load_mmlu_pro()
if not subjects:
subjects = list(test_df.keys())
print("assigned subjects", subjects)
lock = threading.Lock()
system_prompt = config["inference"]["system_prompt"]
for subject in subjects:
start = time.time()
print(f"Testing {subject}...")
config["inference"]["system_prompt"] = system_prompt.replace(
"{subject}", subject
)
test_data = test_df[subject]
output_res_path = os.path.join(output_dir, subject + "_result.json")
output_summary_path = os.path.join(output_dir, subject + "_summary.json")
res, category_record = update_result(output_res_path, lock)
with ThreadPoolExecutor(max_workers=config["test"]["parallel"]) as executor:
futures = {
executor.submit(run_single_question, each, dev_df, res): each
for each in test_data
}
for future in tqdm(
as_completed(futures), total=len(futures), smoothing=0.0, ascii=True
):
each = futures[future]
label = each["answer"]
category = subject
prompt, response, pred, exist = future.result()
if exist:
continue
if response is not None:
res, category_record = update_result(output_res_path, lock)
if category not in category_record:
category_record[category] = {"corr": 0.0, "wrong": 0.0}
if config["log"]["log_prompt"]:
each["prompt"] = prompt
each["response"] = response
each["pred"] = pred
res.append(each)
if config["log"]["verbosity"] >= 2:
log_json = {
"id": each["question_id"],
"question": each["question"],
"response": each["response"],
"pred": each["pred"],
"answer": each["answer"],
}
print("\n" + json.dumps(log_json, indent="\t"))
if pred is not None:
if pred == label:
category_record[category]["corr"] += 1
else:
category_record[category]["wrong"] += 1
else:
category_record[category]["wrong"] += 1
save_res(res, output_res_path, lock)
save_summary(category_record, output_summary_path, lock)
res, category_record = update_result(output_res_path, lock)
save_res(res, output_res_path, lock)
hours, minutes, seconds = elapsed(start)
log(
f"Finished testing {subject} in {hours} hours, {minutes} minutes, {seconds} seconds."
)
save_summary(category_record, output_summary_path, lock, report=True)
def save_res(res, output_res_path, lock):
temp = []
exist_q_id = []
for each in res:
if each["question_id"] not in exist_q_id:
exist_q_id.append(each["question_id"])
temp.append(each)
else:
continue
res = temp
with lock:
with open(output_res_path, "w") as fo:
fo.write(json.dumps(res, indent="\t"))
def print_score(label, corr, wrong):
try:
corr = int(corr)
wrong = int(wrong)
total = corr + wrong
acc = corr / total * 100
log(f"{label}, {corr}/{total}, {acc:.2f}%")
except Exception as e:
log(f"{label}, {e} error")
def save_summary(category_record, output_summary_path, lock, report=False):
total_corr = 0.0
total_wrong = 0.0
for k, v in category_record.items():
if k == "total" or k == "random":
continue
cat_acc = v["corr"] / (v["corr"] + v["wrong"])
category_record[k]["acc"] = cat_acc
total_corr += v["corr"]
total_wrong += v["wrong"]
acc = total_corr / (total_corr + total_wrong)
category_record["total"] = {"corr": total_corr, "wrong": total_wrong, "acc": acc}
if report:
print_score("Total", total_corr, total_wrong)
if "random" in category_record:
random_corr = category_record["random"]["corr"]
random_wrong = category_record["random"]["wrong"]
print_score(
"Random Guess Attempts",
random_corr + random_wrong,
total_corr + total_wrong - random_corr - random_wrong,
)
print_score("Correct Random Guesses", random_corr, random_wrong)
print_score(
"Adjusted Score Without Random Guesses",
total_corr - random_corr,
total_wrong - random_wrong,
)
with lock:
with open(output_summary_path, "w") as fo:
fo.write(json.dumps(category_record, indent="\t"))
def final_report(assigned_subjects):
total_corr = 0.0
total_wrong = 0.0
random_corr = 0.0
random_wrong = 0.0
names = ["overall"] + assigned_subjects
table = "| " + " | ".join(names) + " |\n"
separators = [re.sub(r".", "-", name) for name in names]
table += "| " + " | ".join(separators) + " |\n"
scores = []
for file in assigned_subjects:
res = json.load(open(os.path.join(output_dir, file + "_summary.json")))
cat_corr = res["total"]["corr"]
total_corr += cat_corr
cat_wrong = res["total"]["wrong"]
total_wrong += cat_wrong
scores.append(cat_corr / (cat_corr + cat_wrong))
if "random" in res:
random_corr += res["random"]["corr"]
random_wrong += res["random"]["wrong"]
print_score("Total", total_corr, total_wrong)
if random_corr and random_wrong:
print_score(
"Random Guess Attempts",
random_corr + random_wrong,
total_corr + total_wrong - random_corr - random_wrong,
)
print_score("Correct Random Guesses", random_corr, random_wrong)
print_score(
"Adjusted Score Without Random Guesses",
total_corr - random_corr,
total_wrong - random_wrong,
)
scores.insert(0, total_corr / (total_corr + total_wrong))
scores = [f"{score*100:.2f}" for score in scores]
table += "| " + " | ".join(scores) + " |"
token_report()
log("Markdown Table:")
log(table)
def elapsed(start):
duration = time.time() - start
duration_td = timedelta(seconds=duration)
hours, remainder = divmod(duration_td.seconds, 3600)
minutes, seconds = divmod(remainder, 60)
return hours, minutes, seconds
def token_report():
ptoks = []
ctoks = []
while not usage_q.empty():
usage = usage_q.get()
ptoks.append(usage[0])
ctoks.append(usage[1])
if ptoks and ctoks:
log("Token Usage:")
duration = end - start
ptoks = np.array(ptoks)
ctoks = np.array(ctoks)
log(
f"Prompt tokens: min {ptoks.min()}, average {ptoks.mean():.0f}, max {ptoks.max()}, total {ptoks.sum()}, tk/s {ptoks.sum()/duration:.2f}"
)
log(
f"Completion tokens: min {ctoks.min()}, average {ctoks.mean():.0f}, max {ctoks.max()}, total {ctoks.sum()}, tk/s {ctoks.sum()/duration:.2f}"
)
if __name__ == "__main__":
usage_q = queue.Queue()
output_dir = "eval_results/" + re.sub(r"\W", "-", config["server"]["model"])
os.makedirs(output_dir, exist_ok=True)
log_path = os.path.join(output_dir, "report.txt")
try:
os.remove(log_path)
except:
pass
config_copy = copy.deepcopy(config)
del config_copy["server"]["api_key"]
del config_copy["test"]["categories"]
log(f"{datetime.now()}")
log(json.dumps(config_copy, indent="\t"))
assigned_subjects = config["test"]["categories"]
start = time.time()
evaluate(assigned_subjects)
end = time.time()
hours, minutes, seconds = elapsed(start)
log(
f"Finished the benchmark in {hours} hours, {minutes} minutes, {seconds} seconds."
)
final_report(assigned_subjects)
print("Report saved to:", log_path)
|