File size: 36,361 Bytes
ed28876
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
# RAG_Library.py
#########################################
# RAG Search & Related Functions Library
# This library is used to hold any/all RAG-related operations.
# Currently, all of this code was generated from Sonnet 3.5. 0_0
#
####

import os
from typing import List, Tuple, Callable, Optional
from contextlib import contextmanager
import sqlite3
import numpy as np
from sentence_transformers import SentenceTransformer
from sklearn.metrics.pairwise import cosine_similarity
import logging
from dotenv import load_dotenv

load_dotenv()

logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)


class RAGException(Exception):
    """Custom exception class for RAG-related errors"""
    pass


class BaseRAGSystem:
    def __init__(self, db_path: str, model_name: Optional[str] = None):
        """

        Initialize the RAG system.



        :param db_path: Path to the SQLite database

        :param model_name: Name of the SentenceTransformer model to use

        """
        self.db_path = db_path
        self.model_name = model_name or os.getenv('DEFAULT_MODEL_NAME', 'all-MiniLM-L6-v2')
        try:
            self.model = SentenceTransformer(self.model_name)
            logger.info(f"Initialized SentenceTransformer with model: {self.model_name}")
        except Exception as e:
            logger.error(f"Failed to initialize SentenceTransformer: {e}")
            raise RAGException(f"Model initialization failed: {e}")

        self.init_db()

    @contextmanager
    def get_db_connection(self):
        conn = sqlite3.connect(self.db_path)
        try:
            yield conn
        finally:
            conn.close()

    def init_db(self):
        try:
            with self.get_db_connection() as conn:
                cursor = conn.cursor()
                cursor.execute('''

                CREATE TABLE IF NOT EXISTS documents (

                    id INTEGER PRIMARY KEY,

                    title TEXT,

                    content TEXT,

                    embedding BLOB

                )

                ''')
                conn.commit()
            logger.info("Initialized database schema")
        except sqlite3.Error as e:
            logger.error(f"Failed to initialize database schema: {e}")
            raise RAGException(f"Database schema initialization failed: {e}")

    def add_documents(self, documents: List[Tuple[str, str]]):
        try:
            embeddings = self.model.encode([content for _, content in documents])
            with self.get_db_connection() as conn:
                cursor = conn.cursor()
                cursor.executemany(
                    'INSERT INTO documents (title, content, embedding) VALUES (?, ?, ?)',
                    [(title, content, embedding.tobytes()) for (title, content), embedding in zip(documents, embeddings)]
                )
                conn.commit()
            logger.info(f"Added {len(documents)} documents in batch")
        except Exception as e:
            logger.error(f"Failed to add documents in batch: {e}")
            raise RAGException(f"Batch document addition failed: {e}")

    def get_documents(self) -> List[Tuple[int, str, str, np.ndarray]]:
        try:
            with self.get_db_connection() as conn:
                cursor = conn.cursor()
                cursor.execute('SELECT id, title, content, embedding FROM documents')
                documents = [(id, title, content, np.frombuffer(embedding, dtype=np.float32))
                             for id, title, content, embedding in cursor.fetchall()]
            logger.info(f"Retrieved {len(documents)} documents")
            return documents
        except sqlite3.Error as e:
            logger.error(f"Failed to retrieve documents: {e}")
            raise RAGException(f"Document retrieval failed: {e}")

    def close(self):
        try:
            self.conn.close()
            logger.info("Closed database connection")
        except sqlite3.Error as e:
            logger.error(f"Error closing database connection: {e}")


class StandardRAGSystem(BaseRAGSystem):
    def get_relevant_documents(self, query: str, top_k: int = 3) -> List[Tuple[int, str, str, float]]:
        try:
            query_embedding = self.model.encode([query])[0]
            documents = self.get_documents()
            similarities = [
                (id, title, content, cosine_similarity([query_embedding], [doc_embedding])[0][0])
                for id, title, content, doc_embedding in documents
            ]
            similarities.sort(key=lambda x: x[3], reverse=True)
            logger.info(f"Retrieved top {top_k} relevant documents for query")
            return similarities[:top_k]
        except Exception as e:
            logger.error(f"Error in getting relevant documents: {e}")
            raise RAGException(f"Retrieval of relevant documents failed: {e}")

    def rag_query(self, query: str, llm_function: Callable[[str], str], top_k: int = 3) -> str:
        try:
            relevant_docs = self.get_relevant_documents(query, top_k)
            context = "\n\n".join([f"Title: {title}\nContent: {content}" for _, title, content, _ in relevant_docs])

            llm_prompt = f"Based on the following context, please answer the query:\n\nContext:\n{context}\n\nQuery: {query}"

            response = llm_function(llm_prompt)
            logger.info("Generated response for query")
            return response
        except Exception as e:
            logger.error(f"Error in RAG query: {e}")
            raise RAGException(f"RAG query failed: {e}")


class HyDERAGSystem(BaseRAGSystem):
    def generate_hypothetical_document(self, query: str, llm_function: Callable[[str], str]) -> str:
        try:
            prompt = f"Given the question '{query}', write a short paragraph that would answer this question. Do not include the question itself in your response."
            hypothetical_doc = llm_function(prompt)
            logger.info("Generated hypothetical document")
            return hypothetical_doc
        except Exception as e:
            logger.error(f"Error generating hypothetical document: {e}")
            raise RAGException(f"Hypothetical document generation failed: {e}")

    def get_relevant_documents(self, query: str, llm_function: Callable[[str], str], top_k: int = 3) -> List[
        Tuple[int, str, str, float]]:
        try:
            hypothetical_doc = self.generate_hypothetical_document(query, llm_function)
            hyde_embedding = self.model.encode([hypothetical_doc])[0]

            documents = self.get_documents()
            similarities = [
                (id, title, content, cosine_similarity([hyde_embedding], [doc_embedding])[0][0])
                for id, title, content, doc_embedding in documents
            ]
            similarities.sort(key=lambda x: x[3], reverse=True)
            logger.info(f"Retrieved top {top_k} relevant documents using HyDE")
            return similarities[:top_k]
        except Exception as e:
            logger.error(f"Error in getting relevant documents with HyDE: {e}")
            raise RAGException(f"HyDE retrieval of relevant documents failed: {e}")

    def rag_query(self, query: str, llm_function: Callable[[str], str], top_k: int = 3) -> str:
        try:
            relevant_docs = self.get_relevant_documents(query, llm_function, top_k)
            context = "\n\n".join([f"Title: {title}\nContent: {content}" for _, title, content, _ in relevant_docs])

            llm_prompt = f"Based on the following context, please answer the query:\n\nContext:\n{context}\n\nQuery: {query}"

            response = llm_function(llm_prompt)
            logger.info("Generated response for query using HyDE")
            return response
        except Exception as e:
            logger.error(f"Error in HyDE RAG query: {e}")
            raise RAGException(f"HyDE RAG query failed: {e}")


# Example usage with error handling
def mock_llm(prompt: str) -> str:
    if "write a short paragraph" in prompt:
        return "Paris, the capital of France, is renowned for its iconic Eiffel Tower and rich cultural heritage."
    else:
        return f"This is a mock LLM response for the prompt: {prompt}"


def main():
    use_hyde = False  # Set this to True when you want to enable HyDE

    try:
        if use_hyde:
            rag_system = HyDERAGSystem('rag_database.db')
            logger.info("Using HyDE RAG System")
        else:
            rag_system = StandardRAGSystem('rag_database.db')
            logger.info("Using Standard RAG System")

        # Add sample documents in batch
        sample_docs = [
            ("Paris", "Paris is the capital of France and is known for the Eiffel Tower."),
            ("London", "London is the capital of the United Kingdom and home to Big Ben."),
            ("Tokyo", "Tokyo is the capital of Japan and is famous for its bustling city life.")
        ]

        for title, content in sample_docs:
            rag_system.add_document(title, content)

        query = "What is the capital of France?"
        result = rag_system.rag_query(query, mock_llm)
        print(f"Query: {query}")
        print(f"Result: {result}")

    except RAGException as e:
        logger.error(f"RAG system error: {e}")
        print(f"An error occurred: {e}")
    except Exception as e:
        logger.error(f"Unexpected error: {e}")
        print(f"An unexpected error occurred: {e}")
    finally:
        if 'rag_system' in locals():
            rag_system.close()


if __name__ == "__main__":
    main()



####################################################################################
# async:

# import os
# import asyncio
# from typing import List, Tuple, Callable, Optional
# import aiosqlite
# import numpy as np
# from sentence_transformers import SentenceTransformer
# from sklearn.metrics.pairwise import cosine_similarity
# import logging
# from dotenv import load_dotenv
#
# load_dotenv()
#
# logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
# logger = logging.getLogger(__name__)
#
#
# class RAGException(Exception):
#     """Custom exception class for RAG-related errors"""
#     pass
#
#
# class BaseRAGSystem:
#     def __init__(self, db_path: str, model_name: Optional[str] = None):
#         """
#         Initialize the RAG system.
#
#         :param db_path: Path to the SQLite database
#         :param model_name: Name of the SentenceTransformer model to use
#         """
#         self.db_path = db_path
#         self.model_name = model_name or os.getenv('DEFAULT_MODEL_NAME', 'all-MiniLM-L6-v2')
#         try:
#             self.model = SentenceTransformer(self.model_name)
#             logger.info(f"Initialized SentenceTransformer with model: {self.model_name}")
#         except Exception as e:
#             logger.error(f"Failed to initialize SentenceTransformer: {e}")
#             raise RAGException(f"Model initialization failed: {e}")
#
#     async def init_db(self):
#         try:
#             async with aiosqlite.connect(self.db_path) as db:
#                 await db.execute('''
#                 CREATE TABLE IF NOT EXISTS documents (
#                     id INTEGER PRIMARY KEY,
#                     title TEXT,
#                     content TEXT,
#                     embedding BLOB
#                 )
#                 ''')
#                 await db.commit()
#             logger.info("Initialized database schema")
#         except aiosqlite.Error as e:
#             logger.error(f"Failed to initialize database schema: {e}")
#             raise RAGException(f"Database schema initialization failed: {e}")
#
#     async def add_documents(self, documents: List[Tuple[str, str]]):
#         try:
#             embeddings = self.model.encode([content for _, content in documents])
#             async with aiosqlite.connect(self.db_path) as db:
#                 await db.executemany(
#                     'INSERT INTO documents (title, content, embedding) VALUES (?, ?, ?)',
#                     [(title, content, embedding.tobytes()) for (title, content), embedding in
#                      zip(documents, embeddings)]
#                 )
#                 await db.commit()
#             logger.info(f"Added {len(documents)} documents in batch")
#         except Exception as e:
#             logger.error(f"Failed to add documents in batch: {e}")
#             raise RAGException(f"Batch document addition failed: {e}")
#
# async def get_documents(self) -> List[Tuple[int, str, str, np.ndarray, str]]:
#     try:
#         async with aiosqlite.connect(self.db_path) as db:
#             async with db.execute('SELECT id, title, content, embedding, source FROM documents') as cursor:
#                 documents = [
#                     (id, title, content, np.frombuffer(embedding, dtype=np.float32), source)
#                     async for id, title, content, embedding, source in cursor
#                 ]
#         logger.info(f"Retrieved {len(documents)} documents")
#         return documents
#     except aiosqlite.Error as e:
#         logger.error(f"Failed to retrieve documents: {e}")
#         raise RAGException(f"Document retrieval failed: {e}")
#
#
# class AsyncStandardRAGSystem(BaseRAGSystem):
#     async def get_relevant_documents(self, query: str, top_k: int = 3) -> List[Tuple[int, str, str, float]]:
#         try:
#             query_embedding = self.model.encode([query])[0]
#             documents = await self.get_documents()
#             similarities = [
#                 (id, title, content, cosine_similarity([query_embedding], [doc_embedding])[0][0])
#                 for id, title, content, doc_embedding in documents
#             ]
#             similarities.sort(key=lambda x: x[3], reverse=True)
#             logger.info(f"Retrieved top {top_k} relevant documents for query")
#             return similarities[:top_k]
#         except Exception as e:
#             logger.error(f"Error in getting relevant documents: {e}")
#             raise RAGException(f"Retrieval of relevant documents failed: {e}")
#
#     async def rag_query(self, query: str, llm_function: Callable[[str], str], top_k: int = 3) -> str:
#         try:
#             relevant_docs = await self.get_relevant_documents(query, top_k)
#             context = "\n\n".join([f"Title: {title}\nContent: {content}\nSource: {source}" for _, title, content, _, source in relevant_docs])
#
#             llm_prompt = f"Based on the following context, please answer the query. Include citations in your response using [Source] format:\n\nContext:\n{context}\n\nQuery: {query}"
#
#             response = llm_function(llm_prompt)
#             logger.info("Generated response for query")
#             return response
#         except Exception as e:
#             logger.error(f"Error in RAG query: {e}")
#             raise RAGException(f"RAG query failed: {e}")
#
#
# class AsyncHyDERAGSystem(BaseRAGSystem):
#     async def generate_hypothetical_document(self, query: str, llm_function: Callable[[str], str]) -> str:
#         try:
#             prompt = f"Given the question '{query}', write a short paragraph that would answer this question. Do not include the question itself in your response."
#             hypothetical_doc = llm_function(prompt)
#             logger.info("Generated hypothetical document")
#             return hypothetical_doc
#         except Exception as e:
#             logger.error(f"Error generating hypothetical document: {e}")
#             raise RAGException(f"Hypothetical document generation failed: {e}")
#
#     async def get_relevant_documents(self, query: str, llm_function: Callable[[str], str], top_k: int = 3) -> List[
#         Tuple[int, str, str, float]]:
#         try:
#             hypothetical_doc = await self.generate_hypothetical_document(query, llm_function)
#             hyde_embedding = self.model.encode([hypothetical_doc])[0]
#
#             documents = await self.get_documents()
#             similarities = [
#                 (id, title, content, cosine_similarity([hyde_embedding], [doc_embedding])[0][0])
#                 for id, title, content, doc_embedding in documents
#             ]
#             similarities.sort(key=lambda x: x[3], reverse=True)
#             logger.info(f"Retrieved top {top_k} relevant documents using HyDE")
#             return similarities[:top_k]
#         except Exception as e:
#             logger.error(f"Error in getting relevant documents with HyDE: {e}")
#             raise RAGException(f"HyDE retrieval of relevant documents failed: {e}")
#
#     async def rag_query(self, query: str, llm_function: Callable[[str], str], top_k: int = 3) -> str:
#         try:
#             relevant_docs = await self.get_relevant_documents(query, llm_function, top_k)
#             context = "\n\n".join([f"Title: {title}\nContent: {content}" for _, title, content, _ in relevant_docs])
#
#             llm_prompt = f"Based on the following context, please answer the query:\n\nContext:\n{context}\n\nQuery: {query}"
#
#             response = llm_function(llm_prompt)
#             logger.info("Generated response for query using HyDE")
#             return response
#         except Exception as e:
#             logger.error(f"Error in HyDE RAG query: {e}")
#             raise RAGException(f"HyDE RAG query failed: {e}")
#
#
# # Example usage with error handling
# def mock_llm(prompt: str) -> str:
#     if "write a short paragraph" in prompt:
#         return "Paris, the capital of France, is renowned for its iconic Eiffel Tower and rich cultural heritage."
#     else:
#         return f"This is a mock LLM response for the prompt: {prompt}"
#
#
# async def main():
#     use_hyde = False  # Set this to True when you want to enable HyDE
#
#     try:
#         if use_hyde:
#             rag_system = AsyncHyDERAGSystem('rag_database.db')
#             logger.info("Using Async HyDE RAG System")
#         else:
#             rag_system = AsyncStandardRAGSystem('rag_database.db')
#             logger.info("Using Async Standard RAG System")
#
#         await rag_system.init_db()
#
#         # Add sample documents
#         sample_docs = [
#             ("Paris", "Paris is the capital of France and is known for the Eiffel Tower."),
#             ("London", "London is the capital of the United Kingdom and home to Big Ben."),
#             ("Tokyo", "Tokyo is the capital of Japan and is famous for its bustling city life.")
#         ]
#
#         await rag_system.add_documents(sample_docs)
#
#         query = "What is the capital of France?"
#         result = await rag_system.rag_query(query, mock_llm)
#         print(f"Query: {query}")
#         print(f"Result: {result}")
#
#     except RAGException as e:
#         logger.error(f"RAG system error: {e}")
#         print(f"An error occurred: {e}")
#     except Exception as e:
#         logger.error(f"Unexpected error: {e}")
#         print(f"An unexpected error occurred: {e}")
#
#
# if __name__ == "__main__":
#     asyncio.run(main())



#
# from fastapi import FastAPI, HTTPException
#
# app = FastAPI()
# rag_system = AsyncStandardRAGSystem('rag_database.db')
#
# @app.on_event("startup")
# async def startup_event():
#     await rag_system.init_db()
#
# @app.get("/query")
# async def query(q: str):
#     try:
#         result = await rag_system.rag_query(q, mock_llm)
#         return {"query": q, "result": result}
#     except RAGException as e:
#         raise HTTPException(status_code=500, detail=str(e))
#


############################################################################################
# Using FAISS
#
#
#
# Update DB
# async def init_db(self):
#     try:
#         async with aiosqlite.connect(self.db_path) as db:
#             await db.execute('''
#             CREATE TABLE IF NOT EXISTS documents (
#                 id INTEGER PRIMARY KEY,
#                 title TEXT,
#                 content TEXT,
#                 embedding BLOB,
#                 source TEXT
#             )
#             ''')
#             await db.commit()
#         logger.info("Initialized database schema")
#     except aiosqlite.Error as e:
#         logger.error(f"Failed to initialize database schema: {e}")
#         raise RAGException(f"Database schema initialization failed: {e}")
#
#

# import os
# import asyncio
# from typing import List, Tuple, Callable, Optional
# import aiosqlite
# import numpy as np
# from sentence_transformers import SentenceTransformer
# import faiss
# import logging
# from dotenv import load_dotenv
#
# load_dotenv()
#
# logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
# logger = logging.getLogger(__name__)
#
#
# class RAGException(Exception):
#     """Custom exception class for RAG-related errors"""
#     pass
#
#
# class AsyncFAISSRAGSystem:
#     def __init__(self, db_path: str, model_name: Optional[str] = None):
#         self.db_path = db_path
#         self.model_name = model_name or os.getenv('DEFAULT_MODEL_NAME', 'all-MiniLM-L6-v2')
#         try:
#             self.model = SentenceTransformer(self.model_name)
#             logger.info(f"Initialized SentenceTransformer with model: {self.model_name}")
#         except Exception as e:
#             logger.error(f"Failed to initialize SentenceTransformer: {e}")
#             raise RAGException(f"Model initialization failed: {e}")
#
#         self.index = None
#         self.document_lookup = {}
#
#     async def init_db(self):
#         try:
#             async with aiosqlite.connect(self.db_path) as db:
#                 await db.execute('''
#                 CREATE TABLE IF NOT EXISTS documents (
#                     id INTEGER PRIMARY KEY,
#                     title TEXT,
#                     content TEXT
#                 )
#                 ''')
#                 await db.commit()
#             logger.info("Initialized database schema")
#         except aiosqlite.Error as e:
#             logger.error(f"Failed to initialize database schema: {e}")
#             raise RAGException(f"Database schema initialization failed: {e}")
#
# async def add_documents(self, documents: List[Tuple[str, str, str]]):
#     try:
#         embeddings = self.model.encode([content for _, content, _ in documents])
#         async with aiosqlite.connect(self.db_path) as db:
#             await db.executemany(
#                 'INSERT INTO documents (title, content, embedding, source) VALUES (?, ?, ?, ?)',
#                 [(title, content, embedding.tobytes(), source) for (title, content, source), embedding in
#                  zip(documents, embeddings)]
#             )
#             await db.commit()
#         logger.info(f"Added {len(documents)} documents in batch")
#     except Exception as e:
#         logger.error(f"Failed to add documents in batch: {e}")
#         raise RAGException(f"Batch document addition failed: {e}")
#
#     async def get_relevant_documents(self, query: str, top_k: int = 3) -> List[Tuple[int, str, str, float, str]]:
#         try:
#             query_embedding = self.model.encode([query])[0]
#             documents = await self.get_documents()
#             similarities = [
#                 (id, title, content, cosine_similarity([query_embedding], [doc_embedding])[0][0], source)
#                 for id, title, content, doc_embedding, source in documents
#             ]
#             similarities.sort(key=lambda x: x[3], reverse=True)
#             logger.info(f"Retrieved top {top_k} relevant documents for query")
#             return similarities[:top_k]
#         except Exception as e:
#             logger.error(f"Error in getting relevant documents: {e}")
#             raise RAGException(f"Retrieval of relevant documents failed: {e}")
#
#     async def rag_query(self, query: str, llm_function: Callable[[str], str], top_k: int = 3) -> str:
#         try:
#             relevant_docs = await self.get_relevant_documents(query, top_k)
#             context = "\n\n".join([f"Title: {title}\nContent: {content}" for _, title, content, _ in relevant_docs])
#
#             llm_prompt = f"Based on the following context, please answer the query:\n\nContext:\n{context}\n\nQuery: {query}"
#
#             response = llm_function(llm_prompt)
#             logger.info("Generated response for query")
#             return response
#         except Exception as e:
#             logger.error(f"Error in RAG query: {e}")
#             raise RAGException(f"RAG query failed: {e}")
#
#
# class AsyncFAISSHyDERAGSystem(AsyncFAISSRAGSystem):
#     async def generate_hypothetical_document(self, query: str, llm_function: Callable[[str], str]) -> str:
#         try:
#             prompt = f"Given the question '{query}', write a short paragraph that would answer this question. Do not include the question itself in your response."
#             hypothetical_doc = llm_function(prompt)
#             logger.info("Generated hypothetical document")
#             return hypothetical_doc
#         except Exception as e:
#             logger.error(f"Error generating hypothetical document: {e}")
#             raise RAGException(f"Hypothetical document generation failed: {e}")
#
#     async def get_relevant_documents(self, query: str, llm_function: Callable[[str], str], top_k: int = 3) -> List[
#         Tuple[int, str, str, float]]:
#         try:
#             hypothetical_doc = await self.generate_hypothetical_document(query, llm_function)
#             hyde_embedding = self.model.encode([hypothetical_doc])[0]
#
#             distances, indices = self.index.search(np.array([hyde_embedding]), top_k)
#
#             results = []
#             for i, idx in enumerate(indices[0]):
#                 doc_id = list(self.document_lookup.keys())[idx]
#                 title, content = self.document_lookup[doc_id]
#                 results.append((doc_id, title, content, distances[0][i]))
#
#             logger.info(f"Retrieved top {top_k} relevant documents using HyDE")
#             return results
#         except Exception as e:
#             logger.error(f"Error in getting relevant documents with HyDE: {e}")
#             raise RAGException(f"HyDE retrieval of relevant documents failed: {e}")
#
#
# # Example usage
# def mock_llm(prompt: str) -> str:
#     if "write a short paragraph" in prompt:
#         return "Paris, the capital of France, is renowned for its iconic Eiffel Tower and rich cultural heritage."
#     else:
#         return f"This is a mock LLM response for the prompt: {prompt}"
#
#
# async def main():
#     use_hyde = False  # Set this to True when you want to enable HyDE
#
#     try:
#         if use_hyde:
#             rag_system = AsyncFAISSHyDERAGSystem('rag_database.db')
#             logger.info("Using Async FAISS HyDE RAG System")
#         else:
#             rag_system = AsyncFAISSRAGSystem('rag_database.db')
#             logger.info("Using Async FAISS RAG System")
#
#         await rag_system.init_db()
#
#         # Add sample documents
#         sample_docs = [
#             ("Paris", "Paris is the capital of France and is known for the Eiffel Tower."),
#             ("London", "London is the capital of the United Kingdom and home to Big Ben."),
#             ("Tokyo", "Tokyo is the capital of Japan and is famous for its bustling city life.")
#         ]
#
#         await rag_system.add_documents(sample_docs)
#
#         query = "What is the capital of France?"
#         result = await rag_system.rag_query(query, mock_llm)
#         print(f"Query: {query}")
#         print(f"Result: {result}")
#
#     except RAGException as e:
#         logger.error(f"RAG system error: {e}")
#         print(f"An error occurred: {e}")
#     except Exception as e:
#         logger.error(f"Unexpected error: {e}")
#         print(f"An unexpected error occurred: {e}")
#
#
# if __name__ == "__main__":
#     asyncio.run(main())


"""

Key changes in this FAISS-integrated version:



We've replaced the cosine similarity search with FAISS indexing and search.

The add_documents method now adds embeddings to the FAISS index as well as storing documents in the SQLite database.

We maintain a document_lookup dictionary to quickly retrieve document content based on FAISS search results.

The get_relevant_documents method now uses FAISS for similarity search instead of computing cosine similarities manually.

We've kept the asynchronous structure for database operations, while FAISS operations remain synchronous (as FAISS doesn't have built-in async support).



Benefits of using FAISS:



Scalability: FAISS can handle millions of vectors efficiently, making it suitable for large document collections.

Speed: FAISS is optimized for fast similarity search, which can significantly improve query times as your dataset grows.

Memory Efficiency: FAISS provides various index types that can trade off between search accuracy and memory usage, allowing you to optimize for your specific use case.



Considerations:



This implementation uses a simple IndexFlatL2 FAISS index, which performs exact search. For larger datasets, you might want to consider approximate search methods like IndexIVFFlat for better scalability.

The current implementation keeps all document content in memory (in the document_lookup dictionary). For very large datasets, you might want to modify this to fetch document content from the database as needed.

If you're dealing with a very large number of documents, you might want to implement batch processing for adding documents to the FAISS index.



This FAISS-integrated version should provide better performance for similarity search, especially as your document collection grows larger

"""


###############################################################################################################
# Web Search
# Output from Sonnet 3.5 regarding how to add web searches to the RAG system
# Integrating web search into your RAG system can significantly enhance its capabilities by providing up-to-date information. Here's how you can modify your RAG system to include web search:
#
# First, you'll need to choose a web search API. Some popular options include:
#
# Google Custom Search API
# Bing Web Search API
# DuckDuckGo API
# SerpAPI (which can interface with multiple search engines)
#
#
#
# For this example, let's use the DuckDuckGo API, as it's free and doesn't require authentication.
#
# Install the required library:
# `pip install duckduckgo-search`
#
# Add a new method to your RAG system for web search:
# ```
# from duckduckgo_search import ddg
#
# class AsyncRAGSystem:
#     # ... (existing code) ...
#
#     async def web_search(self, query: str, num_results: int = 3) -> List[Dict[str, str]]:
#         try:
#             results = ddg(query, max_results=num_results)
#             return [{'title': r['title'], 'content': r['body'], 'source': r['href']} for r in results]
#         except Exception as e:
#             logger.error(f"Error in web search: {e}")
#             raise RAGException(f"Web search failed: {e}")
#
#     async def add_web_results_to_db(self, results: List[Dict[str, str]]):
#         try:
#             documents = [(r['title'], r['content'], r['source']) for r in results]
#             await self.add_documents(documents)
#             logger.info(f"Added {len(documents)} web search results to the database")
#         except Exception as e:
#             logger.error(f"Error adding web search results to database: {e}")
#             raise RAGException(f"Adding web search results failed: {e}")
#
#     async def rag_query_with_web_search(self, query: str, llm_function: Callable[[str], str], top_k: int = 3,
#                                         use_web_search: bool = True, num_web_results: int = 3) -> str:
#         try:
#             if use_web_search:
#                 web_results = await self.web_search(query, num_web_results)
#                 await self.add_web_results_to_db(web_results)
#
#             relevant_docs = await self.get_relevant_documents(query, top_k)
#             context = "\n\n".join([f"Title: {title}\nContent: {content}\nSource: {source}"
#                                    for _, title, content, _, source in relevant_docs])
#
#             llm_prompt = f"Based on the following context, please answer the query. Include citations in your response using [Source] format:\n\nContext:\n{context}\n\nQuery: {query}"
#
#             response = llm_function(llm_prompt)
#             logger.info("Generated response for query with web search")
#             return response
#         except Exception as e:
#             logger.error(f"Error in RAG query with web search: {e}")
#             raise RAGException(f"RAG query with web search failed: {e}")
# ```
#
# Update your main function to use the new web search capability:
# ```
# async def main():
#     use_hyde = False  # Set this to True when you want to enable HyDE
#     use_web_search = True  # Set this to False if you don't want to use web search
#
#     try:
#         if use_hyde:
#             rag_system = AsyncHyDERAGSystem('rag_database.db')
#             logger.info("Using Async HyDE RAG System")
#         else:
#             rag_system = AsyncStandardRAGSystem('rag_database.db')
#             logger.info("Using Async Standard RAG System")
#
#         await rag_system.init_db()
#
#         # Add sample documents
#         sample_docs = [
#             ("Paris", "Paris is the capital of France and is known for the Eiffel Tower.", "Local Database"),
#             ("London", "London is the capital of the United Kingdom and home to Big Ben.", "Local Database"),
#             ("Tokyo", "Tokyo is the capital of Japan and is famous for its bustling city life.", "Local Database")
#         ]
#
#         await rag_system.add_documents(sample_docs)
#
#         query = "What is the capital of France?"
#         result = await rag_system.rag_query_with_web_search(query, mock_llm, use_web_search=use_web_search)
#         print(f"Query: {query}")
#         print(f"Result: {result}")
#
#     except RAGException as e:
#         logger.error(f"RAG system error: {e}")
#         print(f"An error occurred: {e}")
#     except Exception as e:
#         logger.error(f"Unexpected error: {e}")
#         print(f"An unexpected error occurred: {e}")
# ```
#
#
# This implementation does the following:
#
# It adds a web_search method that uses the DuckDuckGo API to perform web searches.
# It adds an add_web_results_to_db method that adds the web search results to your existing database.
# It modifies the rag_query method (now called rag_query_with_web_search) to optionally perform a web search before retrieving relevant documents.
#
# When use_web_search is set to True, the system will:
#
# Perform a web search for the given query.
# Add the web search results to the database.
# Retrieve relevant documents (which now may include the newly added web search results).
# Use these documents to generate a response.
#
# This approach allows your RAG system to combine information from your existing database with fresh information from the web, potentially providing more up-to-date and comprehensive answers.
# Remember to handle rate limiting and respect the terms of service of the web search API you choose to use. Also, be aware that adding web search results to your database will increase its size over time, so you may need to implement a strategy to manage this growth (e.g., removing old web search results periodically).