File size: 13,883 Bytes
41ba402
 
 
 
c313b25
 
 
 
 
41ba402
 
c313b25
41ba402
 
c313b25
 
 
f8bbcd6
c313b25
 
 
41ba402
 
 
 
 
 
c313b25
41ba402
 
 
 
 
f8bbcd6
41ba402
7f75764
41ba402
 
 
 
 
 
 
 
 
 
 
c313b25
 
 
 
 
 
 
41ba402
 
 
 
 
 
 
 
 
 
c313b25
 
41ba402
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c313b25
 
 
41ba402
 
 
 
c313b25
41ba402
 
 
 
 
 
 
 
 
7f75764
c313b25
41ba402
c313b25
 
 
 
41ba402
 
 
c313b25
 
 
 
 
 
 
 
 
 
 
 
 
7f75764
f8bbcd6
 
 
41ba402
 
c313b25
41ba402
c313b25
41ba402
 
 
c313b25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41ba402
c313b25
41ba402
 
c313b25
41ba402
 
 
c313b25
41ba402
 
 
c313b25
41ba402
 
 
c313b25
 
 
 
41ba402
c313b25
 
 
 
 
 
 
 
 
 
 
41ba402
 
 
 
 
 
 
 
 
c313b25
 
41ba402
 
 
 
 
c313b25
 
41ba402
 
 
c313b25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41ba402
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
# RAG_QA_Chat_tab.py
# Description: Gradio UI for RAG QA Chat
#
# Imports
import csv
import logging
import json
import os
from datetime import datetime
#
# External Imports
import docx2txt
import gradio as gr
# Local Imports
from App_Function_Libraries.Books.Book_Ingestion_Lib import read_epub
from App_Function_Libraries.DB.DB_Manager import DatabaseError, get_paginated_files, add_media_with_keywords
from App_Function_Libraries.PDF.PDF_Ingestion_Lib import extract_text_and_format_from_pdf
from App_Function_Libraries.RAG.RAG_Libary_2 import generate_answer, enhanced_rag_pipeline
from App_Function_Libraries.RAG.RAG_QA_Chat import search_database, rag_qa_chat
# Eventually... FIXME
from App_Function_Libraries.RAG.RAG_QA_Chat import load_chat_history, save_chat_history
#
########################################################################################################################
#
# Functions:

def create_rag_qa_chat_tab():
    with gr.TabItem("RAG QA Chat"):
        gr.Markdown("# RAG QA Chat")

        with gr.Row():
            with gr.Column(scale=1):
                context_source = gr.Radio(
                    ["All Files in the Database", "Search Database", "Upload File"],
                    label="Context Source",
                    value="All Files in the Database"
                )
                existing_file = gr.Dropdown(label="Select Existing File", choices=[], interactive=True)
                file_page = gr.State(value=1)
                with gr.Row():
                    prev_page_btn = gr.Button("Previous Page")
                    next_page_btn = gr.Button("Next Page")
                    page_info = gr.HTML("Page 1")

                search_query = gr.Textbox(label="Search Query", visible=False)
                search_button = gr.Button("Search", visible=False)
                search_results = gr.Dropdown(label="Search Results", choices=[], visible=False)
                file_upload = gr.File(
                    label="Upload File",
                    visible=False,
                    file_types=["txt", "pdf", "epub", "md", "rtf", "json", "csv"]
                )
                convert_to_text = gr.Checkbox(label="Convert to plain text", visible=False)
                keywords = gr.Textbox(label="Keywords (comma-separated)", visible=False)

                api_choice = gr.Dropdown(
                    choices=["Local-LLM", "OpenAI", "Anthropic", "Cohere", "Groq", "DeepSeek", "Mistral", "OpenRouter", "Llama.cpp", "Kobold", "Ooba", "Tabbyapi", "VLLM", "ollama", "HuggingFace"],
                    label="Select API for RAG",
                    value="OpenAI"
                )

            with gr.Column(scale=2):
                chatbot = gr.Chatbot(height=500)
                msg = gr.Textbox(label="Enter your message")
                submit = gr.Button("Submit (Might take a few seconds/turns blue while processing...)")
                clear_chat = gr.Button("Clear Chat History")

        loading_indicator = gr.HTML(visible=False)

        def update_file_list(page):
            files, total_pages, current_page = get_paginated_files(page)
            choices = [f"{title} (ID: {id})" for id, title in files]
            return gr.update(choices=choices), gr.update(value=f"Page {current_page} of {total_pages}"), current_page

        def next_page_fn(current_page):
            return update_file_list(current_page + 1)

        def prev_page_fn(current_page):
            return update_file_list(max(1, current_page - 1))

        def update_context_source(choice):
            return {
                existing_file: gr.update(visible=choice == "Existing File"),
                prev_page_btn: gr.update(visible=choice == "Existing File"),
                next_page_btn: gr.update(visible=choice == "Existing File"),
                page_info: gr.update(visible=choice == "Existing File"),
                search_query: gr.update(visible=choice == "Search Database"),
                search_button: gr.update(visible=choice == "Search Database"),
                search_results: gr.update(visible=choice == "Search Database"),
                file_upload: gr.update(visible=choice == "Upload File"),
                convert_to_text: gr.update(visible=choice == "Upload File"),
                keywords: gr.update(visible=choice == "Upload File")
            }

        context_source.change(update_context_source, context_source,
                              [existing_file, prev_page_btn, next_page_btn, page_info, search_query, search_button,
                               search_results, file_upload, convert_to_text, keywords])

        next_page_btn.click(next_page_fn, inputs=[file_page], outputs=[existing_file, page_info, file_page])
        prev_page_btn.click(prev_page_fn, inputs=[file_page], outputs=[existing_file, page_info, file_page])

        # Initialize the file list
        context_source.change(lambda: update_file_list(1), outputs=[existing_file, page_info, file_page])

        loading_indicator = gr.HTML(visible=False)

        def rag_qa_chat_wrapper(message, history, context_source, existing_file, search_results, file_upload,

                                convert_to_text, keywords, api_choice):
            try:
                logging.info(f"Starting rag_qa_chat_wrapper with message: {message}")
                logging.info(f"Context source: {context_source}")
                logging.info(f"API choice: {api_choice}")

                # Show loading indicator
                yield history, "", gr.update(visible=True)

                # Ensure api_choice is a string
                api_choice = api_choice.value if isinstance(api_choice, gr.components.Dropdown) else api_choice
                logging.info(f"Resolved API choice: {api_choice}")

                # Only rephrase the question if it's not the first query
                if len(history) > 0:
                    rephrased_question = rephrase_question(history, message, api_choice)
                    logging.info(f"Original question: {message}")
                    logging.info(f"Rephrased question: {rephrased_question}")
                else:
                    rephrased_question = message
                    logging.info(f"First question, no rephrasing: {message}")

                if context_source == "All Files in the Database":
                    # Use the enhanced_rag_pipeline to search the entire database
                    context = enhanced_rag_pipeline(rephrased_question, api_choice)
                    logging.info(f"Using enhanced_rag_pipeline for database search")
                elif context_source == "Search Database":
                    context = f"media_id:{search_results.split('(ID: ')[1][:-1]}"
                    logging.info(f"Using search result with context: {context}")
                else:  # Upload File
                    logging.info("Processing uploaded file")
                    if file_upload is None:
                        raise ValueError("No file uploaded")

                    # Process the uploaded file
                    file_path = file_upload.name
                    file_name = os.path.basename(file_path)
                    logging.info(f"Uploaded file: {file_name}")

                    if convert_to_text:
                        logging.info("Converting file to plain text")
                        content = convert_file_to_text(file_path)
                    else:
                        logging.info("Reading file content")
                        with open(file_path, 'r', encoding='utf-8') as f:
                            content = f.read()

                    logging.info(f"File content length: {len(content)} characters")

                    # Process keywords
                    if not keywords:
                        keywords = "default,rag-file-upload"
                    logging.info(f"Keywords: {keywords}")

                    # Add the content to the database and get the media_id
                    logging.info("Adding content to database")
                    result = add_media_with_keywords(
                        url=file_name,
                        title=file_name,
                        media_type='document',
                        content=content,
                        keywords=keywords,
                        prompt='No prompt for uploaded files',
                        summary='No summary for uploaded files',
                        transcription_model='None',
                        author='Unknown',
                        ingestion_date=datetime.now().strftime('%Y-%m-%d')
                    )

                    logging.info(f"Result from add_media_with_keywords: {result}")
                    if isinstance(result, tuple):
                        media_id, _ = result
                    else:
                        media_id = result

                    context = f"media_id:{media_id}"
                    logging.info(f"Context for uploaded file: {context}")

                logging.info("Calling rag_qa_chat function")
                new_history, response = rag_qa_chat(rephrased_question, history, context, api_choice)
                # Log first 100 chars of response
                logging.info(
                    f"Response received from rag_qa_chat: {response[:100]}...")

                # Add the original question to the history
                new_history[-1] = (message, new_history[-1][1])

                gr.Info("Response generated successfully")
                logging.info("rag_qa_chat_wrapper completed successfully")
                yield new_history, "", gr.update(visible=False)
            except ValueError as e:
                logging.error(f"Input error in rag_qa_chat_wrapper: {str(e)}")
                gr.Error(f"Input error: {str(e)}")
                yield history, "", gr.update(visible=False)
            except DatabaseError as e:
                logging.error(f"Database error in rag_qa_chat_wrapper: {str(e)}")
                gr.Error(f"Database error: {str(e)}")
                yield history, "", gr.update(visible=False)
            except Exception as e:
                logging.error(f"Unexpected error in rag_qa_chat_wrapper: {e}", exc_info=True)
                gr.Error("An unexpected error occurred. Please try again later.")
                yield history, "", gr.update(visible=False)

        def rephrase_question(history, latest_question, api_choice):
            # Thank you https://www.reddit.com/r/LocalLLaMA/comments/1fi1kex/multi_turn_conversation_and_rag/
            conversation_history = "\n".join([f"User: {h[0]}\nAssistant: {h[1]}" for h in history[:-1]])
            prompt = f"""You are a helpful assistant. Given the conversation history and the latest question, resolve any ambiguous references in the latest question.



        Conversation History:

        {conversation_history}



        Latest Question:

        {latest_question}



        Rewritten Question:"""

            # Use the selected API to generate the rephrased question
            rephrased_question = generate_answer(api_choice, prompt, "")
            return rephrased_question.strip()

        def perform_search(query):
            try:
                results = search_database(query)
                return gr.update(choices=results)
            except Exception as e:
                gr.Error(f"Error performing search: {str(e)}")
                return gr.update(choices=[])

        def clear_chat_history():
            return [], ""

        search_button.click(perform_search, inputs=[search_query], outputs=[search_results])

        submit.click(
            rag_qa_chat_wrapper,
            inputs=[msg, chatbot, context_source, existing_file, search_results, file_upload,
                    convert_to_text, keywords, api_choice],
            outputs=[chatbot, msg, loading_indicator]
        )

        clear_chat.click(clear_chat_history, outputs=[chatbot, msg])

    return (context_source, existing_file, search_query, search_button, search_results, file_upload,
            convert_to_text, keywords, api_choice, chatbot, msg, submit, clear_chat)

def convert_file_to_text(file_path):
    """Convert various file types to plain text."""
    file_extension = os.path.splitext(file_path)[1].lower()

    if file_extension == '.pdf':
        return extract_text_and_format_from_pdf(file_path)
    elif file_extension == '.epub':
        return read_epub(file_path)
    elif file_extension in ['.json', '.csv']:
        return read_structured_file(file_path)
    elif file_extension == '.docx':
        return docx2txt.process(file_path)
    elif file_extension in ['.txt', '.md', '.rtf']:
        with open(file_path, 'r', encoding='utf-8') as f:
            return f.read()
    else:
        raise ValueError(f"Unsupported file type: {file_extension}")

def read_structured_file(file_path):
    """Read and convert JSON or CSV files to text."""
    file_extension = os.path.splitext(file_path)[1].lower()

    if file_extension == '.json':
        with open(file_path, 'r') as file:
            data = json.load(file)
        return json.dumps(data, indent=2)

    elif file_extension == '.csv':
        with open(file_path, 'r', newline='') as file:
            csv_reader = csv.reader(file)
            return '\n'.join([','.join(row) for row in csv_reader])

    else:
        raise ValueError(f"Unsupported file type: {file_extension}")

#
# End of RAG_QA_Chat_tab.py
########################################################################################################################
#