File size: 7,931 Bytes
3c80589
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b43f87f
3c80589
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b43f87f
3c80589
 
 
 
b43f87f
3c80589
 
2d55fb8
 
 
b43f87f
 
 
3c80589
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
import base64
import logging
import pathlib
import re
import sys
import uuid

import streamlit as st
import yaml

from obsei.configuration import ObseiConfiguration

logger = logging.getLogger(__name__)
logging.basicConfig(stream=sys.stdout, level=logging.INFO)


def img_to_bytes(img_path):
    img_bytes = pathlib.Path(img_path).read_bytes()
    encoded = base64.b64encode(img_bytes).decode()
    return encoded


# Copied from https://github.com/jrieke/traingenerator/blob/main/app/utils.py
def download_button(
    object_to_download, download_filename, button_text  # , pickle_it=False
):
    try:
        # some strings <-> bytes conversions necessary here
        b64 = base64.b64encode(object_to_download.encode()).decode()
    except AttributeError as e:
        b64 = base64.b64encode(object_to_download).decode()

    button_uuid = str(uuid.uuid4()).replace("-", "")
    button_id = re.sub("\d+", "", button_uuid)

    custom_css = f"""
        <style>
            #{button_id} {{
                display: inline-flex;
                align-items: center;
                justify-content: center;
                background-color: rgb(255, 255, 255);
                color: rgb(38, 39, 48);
                padding: .25rem .75rem;
                position: relative;
                text-decoration: none;
                border-radius: 4px;
                border-width: 1px;
                border-style: solid;
                border-color: rgb(230, 234, 241);
                border-image: initial;
            }}
            #{button_id}:hover {{
                border-color: rgb(246, 51, 102);
                color: rgb(246, 51, 102);
            }}
            #{button_id}:active {{
                box-shadow: none;
                background-color: rgb(246, 51, 102);
                color: white;
                }}
        </style> """

    dl_link = (
        custom_css
        + f'<a download="{download_filename}" id="{button_id}" href="data:file/txt;base64,{b64}">{button_text}</a><br><br>'
    )
    # dl_link = f'<a download="{download_filename}" id="{button_id}" href="data:file/txt;base64,{b64}"><input type="button" kind="primary" value="{button_text}"></a><br></br>'

    st.markdown(dl_link, unsafe_allow_html=True)


def get_obsei_config(current_path, file_name):
    return ObseiConfiguration(
        config_path=current_path,
        config_filename=file_name,
    ).configuration


@st.cache
def get_icon_name(name, icon, icon_size=40, font_size=1):
    if not name:
        return f'<img style="vertical-align:middle;margin:5px 5px" src="{icon}" width="{icon_size}" height="{icon_size}">'
    return (
        f'<p style="font-size:{font_size}px">'
        f'<img style="vertical-align:middle;margin:1px 5px" src="{icon}" width="{icon_size}" height="{icon_size}">'
        f"{name}</p>"
    )


def render_config(config, component, help_str=None, parent_key=None):
    if config is None:
        return

    prefix = "" if parent_key is None else f"{parent_key}."
    if help_str is not None:
        with component.expander("Info", False):
            help_area = "\n".join(help_str)
            st.code(f"{help_area}")
    for k, v in config.items():
        if k == "_target_":
            continue

        if isinstance(v, dict):
            render_config(v, component, None, k)
        elif isinstance(v, list):
            if len(v) == 0:
                continue
            is_object = isinstance(v[0], dict)
            if is_object:
                for idx, sub_element in enumerate(v):
                    render_config(sub_element, component, None, f"{k}[{idx}]")
            else:
                text_data = component.text_area(
                    f"{prefix}{k}", ", ".join(v), help="Comma separated list"
                )
                text_list = text_data.split(",")
                config[k] = [text.strip() for text in text_list]
        elif isinstance(v, bool):
            options = [True, False]
            selected_option = component.radio(f"{prefix}{k}", options, options.index(v))
            config[k] = bool(selected_option)
        else:
            tokens = k.split("_")
            is_secret = tokens[-1] in ["key", "password", "token", "secret"]
            hint = (
                "Enter value"
                if "lookup" not in tokens
                else "Format: `<number><d|h|m>` d=day, h=hour & m=minute"
            )
            config[k] = component.text_input(
                f"{prefix}{k}",
                v,
                type="password" if is_secret else "default",
                help=hint,
            )


def generate_python(generate_config):
    return f"""
from obsei.configuration import ObseiConfiguration

# This is Obsei workflow path and filename
config_path = "./"
config_filename = "workflow.yml"

# Extract config via yaml file using `config_path` and `config_filename`
obsei_configuration = ObseiConfiguration(config_path=config_path, config_filename=config_filename)

# Initialize objects using configuration
source_config = obsei_configuration.initialize_instance("source_config")
source = obsei_configuration.initialize_instance("source")
analyzer = obsei_configuration.initialize_instance("analyzer")
analyzer_config = obsei_configuration.initialize_instance("analyzer_config")
sink_config = obsei_configuration.initialize_instance("sink_config")
sink = obsei_configuration.initialize_instance("sink")

# This will fetch information from configured source ie twitter, app store etc
source_response_list = source.lookup(source_config)

# This will execute analyzer (Sentiment, classification etc) on source data with provided analyzer_config
# Analyzer will it's output to `segmented_data` inside `analyzer_response`
analyzer_response_list = analyzer.analyze_input(
    source_response_list=source_response_list,
    analyzer_config=analyzer_config
)

# This will send analyzed output to configure sink ie Slack, Zendesk etc
sink_response_list = sink.send_data(analyzer_response_list, sink_config)
"""


def generate_yaml(generate_config):
    return yaml.dump(generate_config)


def execute_workflow(generate_config, component=None, log_components=None):
    progress_show = None
    if component:
        progress_show = component.empty()
        progress_show.code("πŸ„πŸ„πŸ„ Processing 🐒🐒🐒")
    try:
        obsei_configuration = ObseiConfiguration(configuration=generate_config)

        source_config = obsei_configuration.initialize_instance("source_config")
        source = obsei_configuration.initialize_instance("source")

        analyzer = obsei_configuration.initialize_instance("analyzer")
        analyzer_config = obsei_configuration.initialize_instance("analyzer_config")

        sink_config = obsei_configuration.initialize_instance("sink_config")
        sink = obsei_configuration.initialize_instance("sink")

        source_response_list = source.lookup(source_config)
        log_components["source"].write([vars(response) for response in source_response_list])

        analyzer_response_list = analyzer.analyze_input(
            source_response_list=source_response_list, analyzer_config=analyzer_config
        )
        log_components["analyzer"].write([vars(response) for response in analyzer_response_list])

        sink_response_list = sink.send_data(analyzer_response_list, sink_config)
        if sink.TYPE == 'Pandas':
            log_components["sink"].write(sink_response_list)
        elif sink_response_list is not None:
            log_components["sink"].write([vars(response) for response in sink_response_list])
        else:
            log_components["sink"].write("No Data")

        if progress_show:
            progress_show.code("πŸŽ‰πŸŽ‰πŸŽ‰ Processing Complete!! 🍾🍾🍾")
    except Exception as ex:
        if progress_show:
            progress_show.code(f"❗❗❗ Processing Failed!! 😞😞😞 \n πŸ‘‰ ({str(ex)})")

        raise ex