Spaces:
Running
Running
File size: 7,841 Bytes
6f8669b 65d79e3 d914368 6f8669b 6db2b96 6f8669b 0b65e94 6f8669b 0b65e94 6f8669b 0b65e94 6f8669b 1bc6b45 e8f434e 6f8669b 6db2b96 6f8669b 6db2b96 7218336 e8f434e 6db2b96 6f8669b e0a2978 c1d9208 e0a2978 47bf365 640cf00 47bf365 3b03d4a daf641a faa93f2 6f8669b 6db2b96 c1d9208 6f8669b 4024f11 6db2b96 162cc9c 0b65e94 844c0e0 6db2b96 e8f434e 844c0e0 594ba05 0052927 6db2b96 e8f434e 6db2b96 ff9ef5b d177d66 640cf00 ff9ef5b 47bf365 7b43c97 47bf365 daf641a d177d66 c1d9208 daf641a ff9ef5b d177d66 4024f11 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 |
import matplotlib.pyplot as plt
import numpy as np
from six import BytesIO
from PIL import Image
import tensorflow as tf
from object_detection.utils import label_map_util
from object_detection.utils import visualization_utils as viz_utils
from object_detection.utils import ops as utils_op
import tarfile
import wget
import gradio as gr
from huggingface_hub import snapshot_download
import os
import cv2
from tqdm import tqdm
PATH_TO_LABELS = 'data/label_map.pbtxt'
category_index = label_map_util.create_category_index_from_labelmap(PATH_TO_LABELS, use_display_name=True)
def pil_image_as_numpy_array(pilimg):
img_array = tf.keras.utils.img_to_array(pilimg)
img_array = np.expand_dims(img_array, axis=0)
return img_array
def load_image_into_numpy_array(path):
image = None
image_data = tf.io.gfile.GFile(path, 'rb').read()
image = Image.open(BytesIO(image_data))
return pil_image_as_numpy_array(image)
def load_model(model_repo_id):
download_dir = snapshot_download(model_repo_id)
saved_model_dir = os.path.join(download_dir, "saved_model")
detection_model = tf.saved_model.load(saved_model_dir)
return detection_model
def predict(pilimg):
image_np = pil_image_as_numpy_array(pilimg)
return predict2(image_np)
def predict2(image_np):
results = detection_model(image_np)
# different object detection models have additional results
result = {key:value.numpy() for key,value in results.items()}
label_id_offset = 0
image_np_with_detections = image_np.copy()
viz_utils.visualize_boxes_and_labels_on_image_array(
image_np_with_detections[0],
result['detection_boxes'][0],
(result['detection_classes'][0] + label_id_offset).astype(int),
result['detection_scores'][0],
category_index,
use_normalized_coordinates=True,
max_boxes_to_draw=20,
min_score_thresh=0.38,
agnostic_mode=False,
line_thickness=2)
result_pil_img2 = tf.keras.utils.array_to_img(image_np_with_detections[0])
return result_pil_img2
def predict3(pilimg):
image_np = pil_image_as_numpy_array(pilimg)
return predict4(image_np)
def predict4(image_np):
results = detection_model2(image_np)
# different object detection models have additional results
result = {key:value.numpy() for key,value in results.items()}
label_id_offset = 0
image_np_with_detections = image_np.copy()
viz_utils.visualize_boxes_and_labels_on_image_array(
image_np_with_detections[0],
result['detection_boxes'][0],
(result['detection_classes'][0] + label_id_offset).astype(int),
result['detection_scores'][0],
category_index,
use_normalized_coordinates=True,
max_boxes_to_draw=20,
min_score_thresh=.38,
agnostic_mode=False,
line_thickness=2)
result_pil_img4 = tf.keras.utils.array_to_img(image_np_with_detections[0])
return result_pil_img4
def detect_video(video):
# Create a video capture object
cap = cv2.VideoCapture(video)
# Process frames in a loop
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
# Expand dimensions since model expects images to have shape: [1, None, None, 3]
image_np_expanded = np.expand_dims(frame, axis=0)
# Run inference
output_dict = model(image_np_expanded)
# Extract detections
boxes = output_dict['detection_boxes'][0].numpy()
scores = output_dict['detection_scores'][0].numpy()
classes = output_dict['detection_classes'][0].numpy().astype(np.int64)
# Draw bounding boxes and labels
image_np_with_detections = viz_utils.visualize_boxes_and_labels_on_image_array(
frame,
boxes,
classes,
scores,
category_index,
use_normalized_coordinates=True,
max_boxes_to_draw=20,
min_score_thresh=.5,
agnostic_mode=False)
# Yield the processed frame
yield image_np_with_detections
# Release resources
cap.release()
a = os.path.join(os.path.dirname(__file__), "data/c_base_detected.mp4") # Video
b = os.path.join(os.path.dirname(__file__), "data/c_tuned_detected.mp4") # Video
def video_demo(video1, video2):
return [video1, video2]
label_id_offset = 0
REPO_ID = "apailang/mytfodmodel"
detection_model = load_model(REPO_ID)
REPO_ID2 = "apailang/mytfodmodeltuned"
detection_model2 = load_model(REPO_ID2)
samples_folder = 'data'
# pil_image = Image.open(image_path)
# image_arr = pil_image_as_numpy_array(pil_image)
# predicted_img = predict(image_arr)
# predicted_img.save('predicted.jpg')
test1 = os.path.join(os.path.dirname(__file__), "data/test1.jpeg")
test2 = os.path.join(os.path.dirname(__file__), "data/test2.jpeg")
test3 = os.path.join(os.path.dirname(__file__), "data/test3.jpeg")
test4 = os.path.join(os.path.dirname(__file__), "data/test4.jpeg")
test5 = os.path.join(os.path.dirname(__file__), "data/test5.jpeg")
test6 = os.path.join(os.path.dirname(__file__), "data/test6.jpeg")
test7 = os.path.join(os.path.dirname(__file__), "data/test7.jpeg")
test8 = os.path.join(os.path.dirname(__file__), "data/test8.jpeg")
test9 = os.path.join(os.path.dirname(__file__), "data/test9.jpeg")
test10 = os.path.join(os.path.dirname(__file__), "data/test10.jpeg")
test11 = os.path.join(os.path.dirname(__file__), "data/test11.jpeg")
test12 = os.path.join(os.path.dirname(__file__), "data/test12.jpeg")
base_image = gr.Interface(
fn=predict,
inputs=[gr.Image(type="pil"),gr.Slider(minimum=0.01, maximum=0.99, value=0.6 ,label="Threshold(WIP)",info="[not in used]to set prediction confidence threshold")],
outputs=gr.Image(type="pil"),
title="Luffy and Chopper face detection (Base mobile net model)",
description="Upload a Image for prediction or click on below examples. Prediction confident >38%",
examples=[[test1],[test2],[test3],[test4],[test5],[test6],[test7],[test8],[test9],[test10],[test11],[test12],],
cache_examples=True
)#.launch(share=True)
tuned_image = gr.Interface(
fn=predict3,
inputs=gr.Image(type="pil"),
outputs=gr.Image(type="pil"),
title="Luffy and Chopper face detection (tuned mobile net model)",
description="Upload a Image for prediction or click on below examples. Mobile net tuned with data Augmentation. Prediction confident >38%",
examples=[[test1],[test2],[test3],[test4],[test5],[test6],[test7],[test8],[test9],[test10],[test11],[test12],],
cache_examples=True
)#.launch(share=True)
# a = os.path.join(os.path.dirname(__file__), "data/a.mp4") # Video
# b = os.path.join(os.path.dirname(__file__), "data/b.mp4") # Video
# c = os.path.join(os.path.dirname(__file__), "data/c.mp4") # Video
# video_out_file = os.path.join(samples_folder,'detected' + '.mp4')
# stt_demo = gr.Interface(
# fn=display_two_videos,
# inputs=gr.Video(),
# outputs=gr.Video(type="mp4",label="Detected Video"),
# examples=[
# [a],
# [b],
# [c],
# ],
# cache_examples=False
# )
video = gr.Interface(
fn=video_demo,
inputs=[gr.Video(label="base model Video"),gr.Video(label="tuned model Video")],
outputs=[gr.Video(label="base model (final output)"), gr.Video(label="Tuned model")],
examples=[
[a, b]
],
title="Comparing base vs tuned detected video",
description="using SSD mobile net V2 320x320. Model has been customed trained to detect Character of Luffy and Chopper"
)
demo = gr.TabbedInterface([base_image,tuned_image, video], ["Image (Base Model)","Image (Tuned Model)", "Display Detected Video"])
if __name__ == "__main__":
demo.launch() |