File size: 7,841 Bytes
6f8669b
 
 
 
 
 
 
 
 
 
 
 
 
65d79e3
d914368
6f8669b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6db2b96
 
6f8669b
 
 
 
 
0b65e94
6f8669b
 
0b65e94
6f8669b
0b65e94
6f8669b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1bc6b45
e8f434e
6f8669b
 
 
6db2b96
6f8669b
6db2b96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7218336
e8f434e
6db2b96
 
 
 
 
 
6f8669b
e0a2978
c1d9208
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e0a2978
47bf365
 
640cf00
47bf365
3b03d4a
daf641a
faa93f2
6f8669b
6db2b96
 
 
 
c1d9208
6f8669b
 
 
 
 
 
4024f11
 
 
 
 
 
 
 
 
 
 
 
 
6db2b96
162cc9c
0b65e94
844c0e0
6db2b96
e8f434e
844c0e0
 
594ba05
0052927
6db2b96
 
 
 
 
e8f434e
6db2b96
 
 
 
 
 
ff9ef5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d177d66
640cf00
ff9ef5b
 
47bf365
7b43c97
 
47bf365
 
daf641a
 
 
d177d66
c1d9208
daf641a
ff9ef5b
d177d66
 
4024f11
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
import matplotlib.pyplot as plt
import numpy as np
from six import BytesIO
from PIL import Image
import tensorflow as tf
from object_detection.utils import label_map_util
from object_detection.utils import visualization_utils as viz_utils
from object_detection.utils import ops as utils_op
import tarfile
import wget 
import gradio as gr
from huggingface_hub import snapshot_download
import os 
import cv2
from tqdm import tqdm

PATH_TO_LABELS = 'data/label_map.pbtxt'   
category_index = label_map_util.create_category_index_from_labelmap(PATH_TO_LABELS, use_display_name=True)

def pil_image_as_numpy_array(pilimg):

    img_array = tf.keras.utils.img_to_array(pilimg)
    img_array = np.expand_dims(img_array, axis=0)
    return img_array
    
def load_image_into_numpy_array(path):
                                    
    image = None
    image_data = tf.io.gfile.GFile(path, 'rb').read()
    image = Image.open(BytesIO(image_data))
    return pil_image_as_numpy_array(image)            

def load_model(model_repo_id):
    download_dir = snapshot_download(model_repo_id)
    saved_model_dir = os.path.join(download_dir, "saved_model")
    detection_model = tf.saved_model.load(saved_model_dir)
    return detection_model


def predict(pilimg):

    image_np = pil_image_as_numpy_array(pilimg)
    return predict2(image_np)

def predict2(image_np):

    results = detection_model(image_np)

    # different object detection models have additional results
    result = {key:value.numpy() for key,value in results.items()}
    
    label_id_offset = 0
    image_np_with_detections = image_np.copy()

    viz_utils.visualize_boxes_and_labels_on_image_array(
        image_np_with_detections[0],
        result['detection_boxes'][0],
        (result['detection_classes'][0] + label_id_offset).astype(int),
        result['detection_scores'][0],
        category_index,
        use_normalized_coordinates=True,
        max_boxes_to_draw=20,
        min_score_thresh=0.38,
        agnostic_mode=False,
        line_thickness=2)

    result_pil_img2 = tf.keras.utils.array_to_img(image_np_with_detections[0])
    
    return result_pil_img2

def predict3(pilimg):

    image_np = pil_image_as_numpy_array(pilimg)
    return predict4(image_np)

def predict4(image_np):

    results = detection_model2(image_np)

    # different object detection models have additional results
    result = {key:value.numpy() for key,value in results.items()}
    
    label_id_offset = 0
    image_np_with_detections = image_np.copy()

    viz_utils.visualize_boxes_and_labels_on_image_array(
        image_np_with_detections[0],
        result['detection_boxes'][0],
        (result['detection_classes'][0] + label_id_offset).astype(int),
        result['detection_scores'][0],
        category_index,
        use_normalized_coordinates=True,
        max_boxes_to_draw=20,
        min_score_thresh=.38,
        agnostic_mode=False,
        line_thickness=2)

    result_pil_img4 = tf.keras.utils.array_to_img(image_np_with_detections[0])
    
    return result_pil_img4

def detect_video(video):
    # Create a video capture object
    cap = cv2.VideoCapture(video)

    # Process frames in a loop
    while cap.isOpened():
        ret, frame = cap.read()
        if not ret:
            break

        # Expand dimensions since model expects images to have shape: [1, None, None, 3]
        image_np_expanded = np.expand_dims(frame, axis=0)

        # Run inference
        output_dict = model(image_np_expanded)

        # Extract detections
        boxes = output_dict['detection_boxes'][0].numpy()
        scores = output_dict['detection_scores'][0].numpy()
        classes = output_dict['detection_classes'][0].numpy().astype(np.int64)

        # Draw bounding boxes and labels
        image_np_with_detections = viz_utils.visualize_boxes_and_labels_on_image_array(
            frame,
            boxes,
            classes,
            scores,
            category_index,
            use_normalized_coordinates=True,
            max_boxes_to_draw=20,
            min_score_thresh=.5,
            agnostic_mode=False)

        # Yield the processed frame
        yield image_np_with_detections

    # Release resources
    cap.release()

a = os.path.join(os.path.dirname(__file__), "data/c_base_detected.mp4")  # Video
b = os.path.join(os.path.dirname(__file__), "data/c_tuned_detected.mp4")  # Video

def video_demo(video1, video2):
    return [video1, video2]

label_id_offset = 0    
REPO_ID = "apailang/mytfodmodel"
detection_model = load_model(REPO_ID)
REPO_ID2 = "apailang/mytfodmodeltuned"
detection_model2 = load_model(REPO_ID2)

samples_folder = 'data'
# pil_image = Image.open(image_path)
# image_arr = pil_image_as_numpy_array(pil_image)

# predicted_img = predict(image_arr)
# predicted_img.save('predicted.jpg')

test1 = os.path.join(os.path.dirname(__file__), "data/test1.jpeg")  
test2 = os.path.join(os.path.dirname(__file__), "data/test2.jpeg")  
test3 = os.path.join(os.path.dirname(__file__), "data/test3.jpeg")  
test4 = os.path.join(os.path.dirname(__file__), "data/test4.jpeg")
test5 = os.path.join(os.path.dirname(__file__), "data/test5.jpeg")
test6 = os.path.join(os.path.dirname(__file__), "data/test6.jpeg")
test7 = os.path.join(os.path.dirname(__file__), "data/test7.jpeg")
test8 = os.path.join(os.path.dirname(__file__), "data/test8.jpeg")
test9 = os.path.join(os.path.dirname(__file__), "data/test9.jpeg")
test10 = os.path.join(os.path.dirname(__file__), "data/test10.jpeg")
test11 = os.path.join(os.path.dirname(__file__), "data/test11.jpeg")
test12 = os.path.join(os.path.dirname(__file__), "data/test12.jpeg")

base_image = gr.Interface(
    fn=predict,
    inputs=[gr.Image(type="pil"),gr.Slider(minimum=0.01, maximum=0.99, value=0.6 ,label="Threshold(WIP)",info="[not in used]to set prediction confidence threshold")],
    outputs=gr.Image(type="pil"),
    title="Luffy and Chopper face detection (Base mobile net model)",
    description="Upload a Image for prediction or click on below examples. Prediction confident >38%",
    examples=[[test1],[test2],[test3],[test4],[test5],[test6],[test7],[test8],[test9],[test10],[test11],[test12],],
    cache_examples=True
    )#.launch(share=True)

tuned_image = gr.Interface(
    fn=predict3,
    inputs=gr.Image(type="pil"),
    outputs=gr.Image(type="pil"),
    title="Luffy and Chopper face detection (tuned mobile net model)",
    description="Upload a Image for prediction or click on below examples. Mobile net tuned with data Augmentation. Prediction confident >38%",
    examples=[[test1],[test2],[test3],[test4],[test5],[test6],[test7],[test8],[test9],[test10],[test11],[test12],],
    cache_examples=True
    )#.launch(share=True)



# a = os.path.join(os.path.dirname(__file__), "data/a.mp4")  # Video
# b = os.path.join(os.path.dirname(__file__), "data/b.mp4")  # Video
# c = os.path.join(os.path.dirname(__file__), "data/c.mp4")  # Video

# video_out_file = os.path.join(samples_folder,'detected' + '.mp4')

# stt_demo = gr.Interface(
#     fn=display_two_videos,
#     inputs=gr.Video(),
#     outputs=gr.Video(type="mp4",label="Detected Video"),
#     examples=[
#         [a],
#         [b],
#         [c],
#     ],
#     cache_examples=False
# )



video = gr.Interface(
    fn=video_demo,
    inputs=[gr.Video(label="base model Video"),gr.Video(label="tuned model Video")], 
    outputs=[gr.Video(label="base model (final output)"), gr.Video(label="Tuned model")],
    examples=[
        [a, b]
    ],
    title="Comparing base vs tuned detected video",
    description="using SSD mobile net V2 320x320. Model has been customed trained to detect Character of Luffy and Chopper"
)

demo = gr.TabbedInterface([base_image,tuned_image, video], ["Image (Base Model)","Image (Tuned Model)", "Display Detected Video"])


if __name__ == "__main__":
    demo.launch()