Spaces:
Build error
Build error
File size: 10,915 Bytes
81170fd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 |
import jax
import jax.numpy as jnp
import functools
def main_step_G(state_G, state_D, batch, z_latent1, z_latent2, metrics, mixing_prob, rng):
def loss_fn(params):
w_latent1, new_state_G = state_G.apply_mapping({'params': params['mapping'], 'moving_stats': state_G.moving_stats},
z_latent1,
batch['label'],
mutable=['moving_stats'])
w_latent2 = state_G.apply_mapping({'params': params['mapping'], 'moving_stats': state_G.moving_stats},
z_latent2,
batch['label'],
skip_w_avg_update=True)
# style mixing
cutoff_rng, layer_select_rng, synth_rng = jax.random.split(rng, num=3)
num_layers = w_latent1.shape[1]
layer_idx = jnp.arange(num_layers)[jnp.newaxis, :, jnp.newaxis]
mixing_cutoff = jax.lax.cond(jax.random.uniform(cutoff_rng, (), minval=0.0, maxval=1.0) < mixing_prob,
lambda _: jax.random.randint(layer_select_rng, (), 1, num_layers, dtype=jnp.int32),
lambda _: num_layers,
operand=None)
mixing_cond = jnp.broadcast_to(layer_idx < mixing_cutoff, w_latent1.shape)
w_latent = jnp.where(mixing_cond, w_latent1, w_latent2)
image_gen = state_G.apply_synthesis({'params': params['synthesis'], 'noise_consts': state_G.noise_consts},
w_latent,
rng=synth_rng)
fake_logits = state_D.apply_fn(state_D.params, image_gen, batch['label'])
loss = jnp.mean(jax.nn.softplus(-fake_logits))
return loss, (fake_logits, image_gen, new_state_G)
dynamic_scale = state_G.dynamic_scale_main
if dynamic_scale:
grad_fn = dynamic_scale.value_and_grad(loss_fn, has_aux=True, axis_name='batch')
dynamic_scale, is_fin, aux, grads = grad_fn(state_G.params)
else:
grad_fn = jax.value_and_grad(loss_fn, has_aux=True)
aux, grads = grad_fn(state_G.params)
grads = jax.lax.pmean(grads, axis_name='batch')
loss = aux[0]
_, image_gen, new_state = aux[1]
metrics['G_loss'] = loss
metrics['image_gen'] = image_gen
new_state_G = state_G.apply_gradients(grads=grads, moving_stats=new_state['moving_stats'])
if dynamic_scale:
new_state_G = new_state_G.replace(opt_state=jax.tree_multimap(functools.partial(jnp.where, is_fin),
new_state_G.opt_state,
state_G.opt_state),
params=jax.tree_multimap(functools.partial(jnp.where, is_fin),
new_state_G.params,
state_G.params))
metrics['G_scale'] = dynamic_scale.scale
return new_state_G, metrics
def regul_step_G(state_G, batch, z_latent, pl_noise, pl_mean, metrics, config, rng):
def loss_fn(params):
w_latent, new_state_G = state_G.apply_mapping({'params': params['mapping'], 'moving_stats': state_G.moving_stats},
z_latent,
batch['label'],
mutable=['moving_stats'])
pl_grads = jax.grad(lambda *args: jnp.sum(state_G.apply_synthesis(*args) * pl_noise), argnums=1)({'params': params['synthesis'],
'noise_consts': state_G.noise_consts},
w_latent,
'random',
rng)
pl_lengths = jnp.sqrt(jnp.mean(jnp.sum(jnp.square(pl_grads), axis=2), axis=1))
pl_mean_new = pl_mean + config.pl_decay * (jnp.mean(pl_lengths) - pl_mean)
pl_penalty = jnp.square(pl_lengths - pl_mean_new) * config.pl_weight
loss = jnp.mean(pl_penalty) * config.G_reg_interval
return loss, pl_mean_new
dynamic_scale = state_G.dynamic_scale_reg
if dynamic_scale:
grad_fn = dynamic_scale.value_and_grad(loss_fn, has_aux=True)
dynamic_scale, is_fin, aux, grads = grad_fn(state_G.params)
else:
grad_fn = jax.value_and_grad(loss_fn, has_aux=True)
aux, grads = grad_fn(state_G.params)
grads = jax.lax.pmean(grads, axis_name='batch')
loss = aux[0]
pl_mean_new = aux[1]
metrics['G_regul_loss'] = loss
new_state_G = state_G.apply_gradients(grads=grads)
if dynamic_scale:
new_state_G = new_state_G.replace(opt_state=jax.tree_multimap(functools.partial(jnp.where, is_fin),
new_state_G.opt_state,
state_G.opt_state),
params=jax.tree_multimap(functools.partial(jnp.where, is_fin),
new_state_G.params,
state_G.params))
metrics['G_regul_scale'] = dynamic_scale.scale
return new_state_G, metrics, pl_mean_new
def main_step_D(state_G, state_D, batch, z_latent1, z_latent2, metrics, mixing_prob, rng):
def loss_fn(params):
w_latent1 = state_G.apply_mapping({'params': state_G.params['mapping'], 'moving_stats': state_G.moving_stats},
z_latent1,
batch['label'],
train=False)
w_latent2 = state_G.apply_mapping({'params': state_G.params['mapping'], 'moving_stats': state_G.moving_stats},
z_latent2,
batch['label'],
train=False)
# style mixing
cutoff_rng, layer_select_rng, synth_rng = jax.random.split(rng, num=3)
num_layers = w_latent1.shape[1]
layer_idx = jnp.arange(num_layers)[jnp.newaxis, :, jnp.newaxis]
mixing_cutoff = jax.lax.cond(jax.random.uniform(cutoff_rng, (), minval=0.0, maxval=1.0) < mixing_prob,
lambda _: jax.random.randint(layer_select_rng, (), 1, num_layers, dtype=jnp.int32),
lambda _: num_layers,
operand=None)
mixing_cond = jnp.broadcast_to(layer_idx < mixing_cutoff, w_latent1.shape)
w_latent = jnp.where(mixing_cond, w_latent1, w_latent2)
image_gen = state_G.apply_synthesis({'params': state_G.params['synthesis'], 'noise_consts': state_G.noise_consts},
w_latent,
rng=synth_rng)
fake_logits = state_D.apply_fn(params, image_gen, batch['label'])
real_logits = state_D.apply_fn(params, batch['image'], batch['label'])
loss_fake = jax.nn.softplus(fake_logits)
loss_real = jax.nn.softplus(-real_logits)
loss = jnp.mean(loss_fake + loss_real)
return loss, (fake_logits, real_logits)
dynamic_scale = state_D.dynamic_scale_main
if dynamic_scale:
grad_fn = dynamic_scale.value_and_grad(loss_fn, has_aux=True)
dynamic_scale, is_fin, aux, grads = grad_fn(state_D.params)
else:
grad_fn = jax.value_and_grad(loss_fn, has_aux=True)
aux, grads = grad_fn(state_D.params)
grads = jax.lax.pmean(grads, axis_name='batch')
loss = aux[0]
fake_logits, real_logits = aux[1]
metrics['D_loss'] = loss
metrics['fake_logits'] = jnp.mean(fake_logits)
metrics['real_logits'] = jnp.mean(real_logits)
new_state_D = state_D.apply_gradients(grads=grads)
if dynamic_scale:
new_state_D = new_state_D.replace(opt_state=jax.tree_multimap(functools.partial(jnp.where, is_fin),
new_state_D.opt_state,
state_D.opt_state),
params=jax.tree_multimap(functools.partial(jnp.where, is_fin),
new_state_D.params,
state_D.params))
metrics['D_scale'] = dynamic_scale.scale
return new_state_D, metrics
def regul_step_D(state_D, batch, metrics, config):
def loss_fn(params):
r1_grads = jax.grad(lambda *args: jnp.sum(state_D.apply_fn(*args)), argnums=1)(params, batch['image'], batch['label'])
r1_penalty = jnp.sum(jnp.square(r1_grads), axis=(1, 2, 3)) * (config.r1_gamma / 2) * config.D_reg_interval
loss = jnp.mean(r1_penalty)
return loss, None
dynamic_scale = state_D.dynamic_scale_reg
if dynamic_scale:
grad_fn = dynamic_scale.value_and_grad(loss_fn, has_aux=True)
dynamic_scale, is_fin, aux, grads = grad_fn(state_D.params)
else:
grad_fn = jax.value_and_grad(loss_fn, has_aux=True)
aux, grads = grad_fn(state_D.params)
grads = jax.lax.pmean(grads, axis_name='batch')
loss = aux[0]
metrics['D_regul_loss'] = loss
new_state_D = state_D.apply_gradients(grads=grads)
if dynamic_scale:
new_state_D = new_state_D.replace(opt_state=jax.tree_multimap(functools.partial(jnp.where, is_fin),
new_state_D.opt_state,
state_D.opt_state),
params=jax.tree_multimap(functools.partial(jnp.where, is_fin),
new_state_D.params,
state_D.params))
metrics['D_regul_scale'] = dynamic_scale.scale
return new_state_D, metrics
def eval_step_G(generator, params, z_latent, labels, truncation):
image_gen = generator.apply(params, z_latent, labels, truncation_psi=truncation, train=False, noise_mode='const')
return image_gen
|