File size: 18,830 Bytes
81170fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
import numpy as np
import jax
from jax import random
import jax.numpy as jnp
import flax.linen as nn
from typing import Any, Tuple, List, Callable
import h5py
from . import ops
from stylegan2 import utils


URLS = {'afhqcat': 'https://www.dropbox.com/s/qygbjkefyqyu9k9/stylegan2_discriminator_afhqcat.h5?dl=1',
        'afhqdog': 'https://www.dropbox.com/s/kmoxbp33qswz64p/stylegan2_discriminator_afhqdog.h5?dl=1',
        'afhqwild': 'https://www.dropbox.com/s/jz1hpsyt3isj6e7/stylegan2_discriminator_afhqwild.h5?dl=1',
        'brecahad': 'https://www.dropbox.com/s/h0cb89hruo6pmyj/stylegan2_discriminator_brecahad.h5?dl=1',
        'car': 'https://www.dropbox.com/s/2ghjrmxih7cic76/stylegan2_discriminator_car.h5?dl=1',
        'cat': 'https://www.dropbox.com/s/zfhjsvlsny5qixd/stylegan2_discriminator_cat.h5?dl=1',
        'church': 'https://www.dropbox.com/s/jlno7zeivkjtk8g/stylegan2_discriminator_church.h5?dl=1',
        'cifar10': 'https://www.dropbox.com/s/eldpubfkl4c6rur/stylegan2_discriminator_cifar10.h5?dl=1',
        'ffhq': 'https://www.dropbox.com/s/m42qy9951b7lq1s/stylegan2_discriminator_ffhq.h5?dl=1',
        'horse': 'https://www.dropbox.com/s/19f5pxrcdh2g8cw/stylegan2_discriminator_horse.h5?dl=1',
        'metfaces': 'https://www.dropbox.com/s/xnokaunql12glkd/stylegan2_discriminator_metfaces.h5?dl=1'}

RESOLUTION = {'metfaces': 1024,
              'ffhq': 1024,
              'church': 256,
              'cat': 256,
              'horse': 256,
              'car': 512,
              'brecahad': 512,
              'afhqwild': 512,
              'afhqdog': 512,
              'afhqcat': 512,
              'cifar10': 32}

C_DIM = {'metfaces': 0,
         'ffhq': 0,
         'church': 0,
         'cat': 0,
         'horse': 0,
         'car': 0,
         'brecahad': 0,
         'afhqwild': 0,
         'afhqdog': 0,
         'afhqcat': 0,
         'cifar10': 10}

ARCHITECTURE = {'metfaces': 'resnet',
                'ffhq': 'resnet',
                'church': 'resnet',
                'cat': 'resnet',
                'horse': 'resnet',
                'car': 'resnet',
                'brecahad': 'resnet',
                'afhqwild': 'resnet',
                'afhqdog': 'resnet',
                'afhqcat': 'resnet',
                'cifar10': 'orig'}

MBSTD_GROUP_SIZE = {'metfaces': None,
                    'ffhq': None,
                    'church': None,
                    'cat': None,
                    'horse': None,
                    'car': None,
                    'brecahad': None,
                    'afhqwild': None,
                    'afhqdog': None,
                    'afhqcat': None,
                    'cifar10': 32}


class FromRGBLayer(nn.Module):
    """
    From RGB Layer.

    Attributes:
        fmaps (int): Number of output channels of the convolution.
        kernel (int): Kernel size of the convolution.
        lr_multiplier (float): Learning rate multiplier.
        activation (str): Activation function: 'relu', 'lrelu', etc.
        param_dict (h5py.Group): Parameter dict with pretrained parameters. If not None, 'pretrained' will be ignored.
        clip_conv (float): Clip the output of convolution layers to [-clip_conv, +clip_conv], None = disable clipping.
        dtype (str): Data dtype.
        rng (jax.random.PRNGKey): PRNG for initialization.
    """
    fmaps: int
    kernel: int=1
    lr_multiplier: float=1
    activation: str='leaky_relu'
    param_dict: h5py.Group=None
    clip_conv: float=None
    dtype: str='float32'
    rng: Any=random.PRNGKey(0)

    @nn.compact
    def __call__(self, x, y):
        """
        Run From RGB Layer.

        Args:
            x (tensor): Input image of shape [N, H, W, num_channels].
            y (tensor): Input tensor of shape [N, H, W, out_channels].

        Returns:
            (tensor): Output tensor of shape [N, H, W, out_channels].
        """
        w_shape = [self.kernel, self.kernel, x.shape[3], self.fmaps]
        w, b = ops.get_weight(w_shape, self.lr_multiplier, True, self.param_dict, 'fromrgb', self.rng)

        w = self.param(name='weight', init_fn=lambda *_ : w)
        b = self.param(name='bias', init_fn=lambda *_ : b)
        w = ops.equalize_lr_weight(w, self.lr_multiplier)
        b = ops.equalize_lr_bias(b, self.lr_multiplier)
        
        x = x.astype(self.dtype)
        x = ops.conv2d(x, w.astype(x.dtype))
        x += b.astype(x.dtype)
        x = ops.apply_activation(x, activation=self.activation)
        if self.clip_conv is not None:
            x = jnp.clip(x, -self.clip_conv, self.clip_conv)
        if y is not None:
            x += y
        return x


class DiscriminatorLayer(nn.Module):
    """
    Discriminator Layer.

    Attributes:
        fmaps (int): Number of output channels of the convolution.
        kernel (int): Kernel size of the convolution.
        use_bias (bool): If True, use bias.
        down (bool): If True, downsample the spatial resolution.
        resample_kernel (Tuple): Kernel that is used for FIR filter.
        activation (str): Activation function: 'relu', 'lrelu', etc.
        layer_name (str): Layer name.
        param_dict (h5py.Group): Parameter dict with pretrained parameters.
        lr_multiplier (float): Learning rate multiplier.
        clip_conv (float): Clip the output of convolution layers to [-clip_conv, +clip_conv], None = disable clipping.
        dtype (str): Data dtype.
        rng (jax.random.PRNGKey): PRNG for initialization.
    """
    fmaps: int
    kernel: int=3
    use_bias: bool=True
    down: bool=False
    resample_kernel: Tuple=None
    activation: str='leaky_relu'
    layer_name: str=None
    param_dict: h5py.Group=None
    lr_multiplier: float=1
    clip_conv: float=None
    dtype: str='float32'
    rng: Any=random.PRNGKey(0)

    @nn.compact
    def __call__(self, x):
        """
        Run Discriminator Layer.

        Args:
            x (tensor): Input tensor of shape [N, H, W, C].

        Returns:
            (tensor): Output tensor of shape [N, H, W, fmaps].
        """
        w_shape = [self.kernel, self.kernel, x.shape[3], self.fmaps]
        if self.use_bias:
            w, b = ops.get_weight(w_shape, self.lr_multiplier, self.use_bias, self.param_dict, self.layer_name, self.rng)
        else:
            w = ops.get_weight(w_shape, self.lr_multiplier, self.use_bias, self.param_dict, self.layer_name, self.rng)

        w = self.param(name='weight', init_fn=lambda *_ : w)
        w = ops.equalize_lr_weight(w, self.lr_multiplier)
        if self.use_bias:
            b = self.param(name='bias', init_fn=lambda *_ : b)
            b = ops.equalize_lr_bias(b, self.lr_multiplier)

        x = x.astype(self.dtype)
        x = ops.conv2d(x, w, down=self.down, resample_kernel=self.resample_kernel)
        if self.use_bias: x += b.astype(x.dtype)
        x = ops.apply_activation(x, activation=self.activation)
        if self.clip_conv is not None:
            x = jnp.clip(x, -self.clip_conv, self.clip_conv)
        return x


class DiscriminatorBlock(nn.Module):
    """
    Discriminator Block.

    Attributes:
        fmaps (int): Number of output channels of the convolution.
        kernel (int): Kernel size of the convolution.
        resample_kernel (Tuple): Kernel that is used for FIR filter.
        activation (str): Activation function: 'relu', 'lrelu', etc.
        param_dict (h5py.Group): Parameter dict with pretrained parameters.
        lr_multiplier (float): Learning rate multiplier.
        architecture (str): Architecture: 'orig', 'resnet'.
        nf (Callable): Callable that returns the number of feature maps for a given layer.
        clip_conv (float): Clip the output of convolution layers to [-clip_conv, +clip_conv], None = disable clipping.
        dtype (str): Data dtype.
        rng (jax.random.PRNGKey): Random seed for initialization.
    """
    res: int
    kernel: int=3
    resample_kernel: Tuple=(1, 3, 3, 1)
    activation: str='leaky_relu'
    param_dict: Any=None
    lr_multiplier: float=1
    architecture: str='resnet'
    nf: Callable=None
    clip_conv: float=None
    dtype: str='float32'
    rng: Any=random.PRNGKey(0)

    @nn.compact
    def __call__(self, x):
        """
        Run Discriminator Block.

        Args:
            x (tensor): Input tensor of shape [N, H, W, C].

        Returns:
            (tensor): Output tensor of shape [N, H, W, fmaps].
        """
        init_rng = self.rng
        x = x.astype(self.dtype)
        residual = x
        for i in range(2):
            init_rng, init_key = random.split(init_rng)
            x = DiscriminatorLayer(fmaps=self.nf(self.res - (i + 1)),
                                   kernel=self.kernel,
                                   down=i == 1,
                                   resample_kernel=self.resample_kernel if i == 1 else None,
                                   activation=self.activation,
                                   layer_name=f'conv{i}',
                                   param_dict=self.param_dict,
                                   lr_multiplier=self.lr_multiplier,
                                   clip_conv=self.clip_conv,
                                   dtype=self.dtype,
                                   rng=init_key)(x)

        
        if self.architecture == 'resnet':
            init_rng, init_key = random.split(init_rng)
            residual = DiscriminatorLayer(fmaps=self.nf(self.res - 2),
                                          kernel=1,
                                          use_bias=False,
                                          down=True,
                                          resample_kernel=self.resample_kernel,
                                          activation='linear',
                                          layer_name='skip',
                                          param_dict=self.param_dict,
                                          lr_multiplier=self.lr_multiplier,
                                          dtype=self.dtype,
                                          rng=init_key)(residual)

            x = (x + residual) * np.sqrt(0.5, dtype=x.dtype)
        return x


class Discriminator(nn.Module):
    """
    Discriminator.

    Attributes:
        resolution (int): Input resolution. Overridden based on dataset.
        num_channels (int): Number of input color channels. Overridden based on dataset.
        c_dim (int): Dimensionality of the labels (c), 0 if no labels. Overrttten based on dataset.
        fmap_base (int): Overall multiplier for the number of feature maps.
        fmap_decay (int): Log2 feature map reduction when doubling the resolution.
        fmap_min (int): Minimum number of feature maps in any layer.
        fmap_max (int): Maximum number of feature maps in any layer.
        mapping_layers (int): Number of additional mapping layers for the conditioning labels.
        mapping_fmaps (int): Number of activations in the mapping layers, None = default.
        mapping_lr_multiplier (float): Learning rate multiplier for the mapping layers.
        architecture (str): Architecture: 'orig', 'resnet'.
        activation (int): Activation function: 'relu', 'leaky_relu', etc.
        mbstd_group_size (int): Group size for the minibatch standard deviation layer, None = entire minibatch.
        mbstd_num_features (int): Number of features for the minibatch standard deviation layer, 0 = disable.
        resample_kernel (Tuple): Low-pass filter to apply when resampling activations, None = box filter.
        num_fp16_res (int): Use float16 for the 'num_fp16_res' highest resolutions.
        clip_conv (float): Clip the output of convolution layers to [-clip_conv, +clip_conv], None = disable clipping.
        pretrained (str): Use pretrained model, None for random initialization.
        ckpt_dir (str): Directory to which the pretrained weights are downloaded. If None, a temp directory will be used.
        dtype (str): Data type.
        rng (jax.random.PRNGKey): PRNG for initialization.
    """
    # Input dimensions.
    resolution: int=1024
    num_channels: int=3
    c_dim: int=0

    # Capacity.
    fmap_base: int=16384
    fmap_decay: int=1
    fmap_min: int=1
    fmap_max: int=512

    # Internal details.
    mapping_layers: int=0
    mapping_fmaps: int=None
    mapping_lr_multiplier: float=0.1
    architecture: str='resnet'
    activation: str='leaky_relu'
    mbstd_group_size: int=None
    mbstd_num_features: int=1
    resample_kernel: Tuple=(1, 3, 3, 1)
    num_fp16_res: int=0
    clip_conv: float=None

    # Pretraining
    pretrained: str=None
    ckpt_dir: str=None
    
    dtype: str='float32'
    rng: Any=random.PRNGKey(0)

    def setup(self):
        self.resolution_ = self.resolution
        self.c_dim_ = self.c_dim
        self.architecture_ = self.architecture
        self.mbstd_group_size_ = self.mbstd_group_size
        self.param_dict = None
        if self.pretrained is not None:
            assert self.pretrained in URLS.keys(), f'Pretrained model not available: {self.pretrained}'
            ckpt_file = utils.download(self.ckpt_dir, URLS[self.pretrained])
            self.param_dict = h5py.File(ckpt_file, 'r')['discriminator']
            self.resolution_ = RESOLUTION[self.pretrained]
            self.architecture_ = ARCHITECTURE[self.pretrained]
            self.mbstd_group_size_ = MBSTD_GROUP_SIZE[self.pretrained]
            self.c_dim_ = C_DIM[self.pretrained]

        assert self.architecture in ['orig', 'resnet']

    @nn.compact
    def __call__(self, x, c=None):
        """
        Run Discriminator.

        Args:
            x (tensor): Input image of shape [N, H, W, num_channels].
            c (tensor): Input labels, shape [N, c_dim].
        
        Returns:
            (tensor): Output tensor of shape [N, 1].
        """
        resolution_log2 = int(np.log2(self.resolution_))
        assert self.resolution_ == 2**resolution_log2 and self.resolution_ >= 4
        def nf(stage): return np.clip(int(self.fmap_base / (2.0 ** (stage * self.fmap_decay))), self.fmap_min, self.fmap_max)
        if self.mapping_fmaps is None:
            mapping_fmaps = nf(0)
        else:
            mapping_fmaps = self.mapping_fmaps
        
        init_rng = self.rng
        # Label embedding and mapping.
        if self.c_dim_ > 0:
            c = ops.LinearLayer(in_features=self.c_dim_,
                                out_features=mapping_fmaps,
                                lr_multiplier=self.mapping_lr_multiplier,
                                param_dict=self.param_dict,
                                layer_name='label_embedding',
                                dtype=self.dtype,
                                rng=init_rng)(c)
        
            c = ops.normalize_2nd_moment(c)
            for i in range(self.mapping_layers):
                init_rng, init_key = random.split(init_rng)
                c = ops.LinearLayer(in_features=self.c_dim_,
                                    out_features=mapping_fmaps,
                                    lr_multiplier=self.mapping_lr_multiplier,
                                    param_dict=self.param_dict,
                                    layer_name=f'fc{i}',
                                    dtype=self.dtype,
                                    rng=init_key)(c)

        # Layers for >=8x8 resolutions.
        y = None
        for res in range(resolution_log2, 2, -1):
            res_str = f'block_{2**res}x{2**res}'
            if res == resolution_log2:
                init_rng, init_key = random.split(init_rng)
                x = FromRGBLayer(fmaps=nf(res - 1),
                                 kernel=1,
                                 activation=self.activation,
                                 param_dict=self.param_dict[res_str] if self.param_dict is not None else None,
                                 clip_conv=self.clip_conv,
                                 dtype=self.dtype if res >= resolution_log2 + 1 - self.num_fp16_res else 'float32',
                                 rng=init_key)(x, y)
 
            init_rng, init_key = random.split(init_rng)
            x = DiscriminatorBlock(res=res,
                                   kernel=3,
                                   resample_kernel=self.resample_kernel,
                                   activation=self.activation,
                                   param_dict=self.param_dict[res_str] if self.param_dict is not None else None,
                                   architecture=self.architecture_,
                                   nf=nf,
                                   clip_conv=self.clip_conv,
                                   dtype=self.dtype if res >= resolution_log2 + 1 - self.num_fp16_res else 'float32',
                                   rng=init_key)(x)

        # Layers for 4x4 resolution.
        dtype = jnp.float32
        x = x.astype(dtype)
        if self.mbstd_num_features > 0:
            x = ops.minibatch_stddev_layer(x, self.mbstd_group_size_, self.mbstd_num_features)
        init_rng, init_key = random.split(init_rng)
        x = DiscriminatorLayer(fmaps=nf(1),
                               kernel=3,
                               use_bias=True,
                               activation=self.activation,
                               layer_name='conv0',
                               param_dict=self.param_dict['block_4x4'] if self.param_dict is not None else None,
                               clip_conv=self.clip_conv,
                               dtype=dtype,
                               rng=init_rng)(x)

        # Switch to NCHW so that the pretrained weights still work after reshaping
        x = jnp.transpose(x, axes=(0, 3, 1, 2))
        x = jnp.reshape(x, newshape=(-1, x.shape[1] * x.shape[2] * x.shape[3]))

        init_rng, init_key = random.split(init_rng)
        x = ops.LinearLayer(in_features=x.shape[1],
                            out_features=nf(0),
                            activation=self.activation,
                            param_dict=self.param_dict['block_4x4'] if self.param_dict is not None else None,
                            layer_name='fc0',
                            dtype=dtype,
                            rng=init_key)(x)

        # Output layer.
        init_rng, init_key = random.split(init_rng)
        x = ops.LinearLayer(in_features=x.shape[1],
                            out_features=1 if self.c_dim_ == 0 else mapping_fmaps,
                            param_dict=self.param_dict,
                            layer_name='output',
                            dtype=dtype,
                            rng=init_key)(x)

        if self.c_dim_ > 0:
            x = jnp.sum(x * c, axis=1, keepdims=True) / jnp.sqrt(mapping_fmaps)
        return x