File size: 6,381 Bytes
81170fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import jax
import jax.numpy as jnp
import flax
import flax.linen as nn
import numpy as np
import os
import functools
import argparse
import scipy
from tqdm import tqdm
import logging

from . import inception
from . import utils

logger = logging.getLogger(__name__)

class FID:

    def __init__(self, generator, dataset, config, use_cache=True, truncation_psi=1.0):
        """
        Evaluates the FID score for a given generator and a given dataset.
        Implementation mostly taken from https://github.com/matthias-wright/jax-fid

        Reference: https://arxiv.org/abs/1706.08500

        Args:
            generator (nn.Module): Generator network.
            dataset (tf.data.Dataset): Dataset containing the real images.
            config (argparse.Namespace): Configuration.
            use_cache (bool): If True, only compute the activation stats once for the real images and store them.
            truncation_psi (float): Controls truncation (trading off variation for quality). If 1, truncation is disabled.
        """
        self.num_images = config.num_fid_images
        self.batch_size = config.batch_size
        self.c_dim = config.c_dim
        self.z_dim = config.z_dim
        self.dataset = dataset
        self.num_devices = jax.device_count()
        self.num_local_devices = jax.local_device_count()
        self.use_cache = use_cache

        if self.use_cache:
            self.cache = {}

        rng = jax.random.PRNGKey(0)
        inception_net = inception.InceptionV3(pretrained=True)
        self.inception_params = inception_net.init(rng, jnp.ones((1, config.resolution, config.resolution, 3)))
        self.inception_params = flax.jax_utils.replicate(self.inception_params)
        #self.inception = jax.jit(functools.partial(model.apply, train=False))
        self.inception_apply = jax.pmap(functools.partial(inception_net.apply, train=False), axis_name='batch')
        
        self.generator_apply = jax.pmap(functools.partial(generator.apply, truncation_psi=truncation_psi, train=False, noise_mode='const'), axis_name='batch')

    def compute_fid(self, generator_params, seed_offset=0):
        generator_params = flax.jax_utils.replicate(generator_params)
        mu_real, sigma_real = self.compute_stats_for_dataset()
        mu_fake, sigma_fake = self.compute_stats_for_generator(generator_params, seed_offset)
        fid_score = self.compute_frechet_distance(mu_real, mu_fake, sigma_real, sigma_fake, eps=1e-6)
        return fid_score

    def compute_frechet_distance(self, mu1, mu2, sigma1, sigma2, eps=1e-6):
        # Taken from: https://github.com/mseitzer/pytorch-fid/blob/master/src/pytorch_fid/fid_score.py
        mu1 = np.atleast_1d(mu1)
        mu2 = np.atleast_1d(mu2)
        sigma1 = np.atleast_1d(sigma1)
        sigma2 = np.atleast_1d(sigma2)

        assert mu1.shape == mu2.shape
        assert sigma1.shape == sigma2.shape

        diff = mu1 - mu2

        covmean, _ = scipy.linalg.sqrtm(sigma1.dot(sigma2), disp=False)
        if not np.isfinite(covmean).all():
            msg = ('fid calculation produces singular product; '
                   'adding %s to diagonal of cov estimates') % eps
            logger.info(msg)
            offset = np.eye(sigma1.shape[0]) * eps
            covmean = scipy.linalg.sqrtm((sigma1 + offset).dot(sigma2 + offset))

        # Numerical error might give slight imaginary component
        if np.iscomplexobj(covmean):
            if not np.allclose(np.diagonal(covmean).imag, 0, atol=1e-3):
                m = np.max(np.abs(covmean.imag))
                raise ValueError('Imaginary component {}'.format(m))
            covmean = covmean.real

        tr_covmean = np.trace(covmean)
        return (diff.dot(diff) + np.trace(sigma1) + np.trace(sigma2) - 2 * tr_covmean)

    def compute_stats_for_dataset(self):
        if self.use_cache and 'mu' in self.cache and 'sigma' in self.cache:
            logger.info('Use cached statistics for dataset...')
            return self.cache['mu'], self.cache['sigma']
        
        print()
        logger.info('Compute statistics for dataset...')
        image_count = 0

        activations = []
        for batch in utils.prefetch(self.dataset, n_prefetch=2):
            act = self.inception_apply(self.inception_params, jax.lax.stop_gradient(batch['image']))
            act = jnp.reshape(act, (self.num_local_devices * self.batch_size, -1))
            activations.append(act)

            image_count += self.num_local_devices * self.batch_size
            if image_count >= self.num_images:
                break

        activations = jnp.concatenate(activations, axis=0)
        activations = activations[:self.num_images]
        mu = np.mean(activations, axis=0)
        sigma = np.cov(activations, rowvar=False)
        self.cache['mu'] = mu
        self.cache['sigma'] = sigma
        return mu, sigma

    def compute_stats_for_generator(self, generator_params, seed_offset):
        print()
        logger.info('Compute statistics for generator...')
        num_batches = int(np.ceil(self.num_images / (self.batch_size * self.num_local_devices))) 

        activations = []

        for i in range(num_batches):
            rng = jax.random.PRNGKey(seed_offset + i)
            z_latent = jax.random.normal(rng, shape=(self.num_local_devices, self.batch_size, self.z_dim))

            labels = None
            if self.c_dim > 0:
                labels = jax.random.randint(rng, shape=(self.num_local_devices * self.batch_size,), minval=0, maxval=self.c_dim)
                labels = jax.nn.one_hot(labels, num_classes=self.c_dim)
                labels = jnp.reshape(labels, (self.num_local_devices, self.batch_size, self.c_dim))
            
            image = self.generator_apply(generator_params, jax.lax.stop_gradient(z_latent), labels)
            image = (image - jnp.min(image)) / (jnp.max(image) - jnp.min(image))

            image = 2 * image - 1
            act = self.inception_apply(self.inception_params, jax.lax.stop_gradient(image))
            act = jnp.reshape(act, (self.num_local_devices * self.batch_size, -1))
            activations.append(act)

        activations = jnp.concatenate(activations, axis=0)
        activations = activations[:self.num_images]
        mu = np.mean(activations, axis=0)
        sigma = np.cov(activations, rowvar=False)
        return mu, sigma