File size: 3,191 Bytes
2fcb72a
 
 
 
 
 
 
c113723
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2fcb72a
 
 
 
 
 
 
 
c113723
2fcb72a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5bc8e4
2fcb72a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
import os
from typing import List

import pandas as pd

DATASET_DIRECTORY = "dataset"

# COLUMNS_MAPPING = {
#     "config.name": "Quantization",
#     "config.backend.model": "Model",
#     # primary measurements
#     "report.prefill.throughput.value": "Prefill (tokens/s)",
#     "report.decode.throughput.value": "Decode (tokens/s)",
#     "report.memory": "Model Size (GB)",
#     # deployment settings
#     "config.backend.name": "Backend",
#     "quantization": "Quantization",
#     # additional information
#     "#Params (B)": "Params (B)",
# }
SORTING_COLUMNS = ["Model Size (GB)", "Decode (tokens/s)", "Prefill (tokens/s)", "MMLU Accuracy"]
SORTING_ASCENDING = [False, True, True, True]


def get_raw_llm_perf_df(
    machine: str, backends: List[str], hardware_type: str
):
    dfs = []
    try:
        dfs.append(
            pd.read_csv("/Users/arnavchavan/leaderboard/benchmark_results_with_mmlu.csv")
            # pd.read_csv(
            #     f"hf://datasets/nyunai/edge-llm-leaderboard/perf-df-{hardware_type}-{machine}-{backends}.csv"
            # )
        )
    except Exception:
        print("Dataset not found for:")
        print(f"  • Machine: {machine}")
        print(f"  • Hardware Type: {hardware_type}")
        url = f"https://huggingface.co/datasets/nyunai/edge-llm-leaderboard/blob/main/perf-df-{hardware_type}-{machine}-{backends}.csv"
        print(f"  • URL: {url}")

    if len(dfs) == 0:
        raise ValueError(
            f"No datasets found for machine {machine}, check your hardware.yml config file or your datatset on huggingface"
        )

    perf_df = pd.concat(dfs)
    # llm_df = pd.read_csv(
    #     "hf://datasets/optimum-benchmark/llm-perf-leaderboard/llm-df.csv"
    # )

    # llm_perf_df = pd.merge(
    #     llm_df, perf_df, left_on="Model", right_on="config.backend.model"
    # )

    return perf_df


def processed_llm_perf_df(llm_perf_df):
    # llm_perf_df["architecture"] = llm_perf_df["config.backend.model"].apply(
    #     process_architectures
    # )
    # round numerical columns
    llm_perf_df = llm_perf_df.round(
        {
            "Prefill (tokens/s)": 3,
            "Decode (tokens/s)": 3,
            "Model Size (GB)": 3,
            "#Params (B)": 3,
            "MMLU Accuracy": 1,
        }
    )
    # sort by metric
    llm_perf_df.sort_values(
        by=SORTING_COLUMNS,
        ascending=SORTING_ASCENDING,
        inplace=True,
    )

    return llm_perf_df


def get_llm_perf_df(
    machine: str, backends: List[str], hardware_type: str
):
    if not os.path.exists(DATASET_DIRECTORY):
        os.makedirs(DATASET_DIRECTORY)

    if os.path.exists(f"{DATASET_DIRECTORY}/llm-perf-leaderboard-{machine}.csv"):
        llm_perf_df = pd.read_csv(
            f"{DATASET_DIRECTORY}/llm-perf-leaderboard-{machine}.csv"
        )
    else:
        print(f"Dataset machine {machine} not found, downloading...")
        llm_perf_df = get_raw_llm_perf_df(machine, backends, hardware_type)
        llm_perf_df = processed_llm_perf_df(llm_perf_df)
        llm_perf_df.to_csv(
            f"{DATASET_DIRECTORY}/llm-perf-leaderboard-{machine}.csv", index=False
        )

    return llm_perf_df