Spaces:
Running
on
Zero
Running
on
Zero
File size: 14,768 Bytes
a859794 aee2f15 a859794 aee2f15 a859794 8e33c4a a859794 8e33c4a a859794 8e33c4a a859794 8e33c4a a859794 aee2f15 a859794 aee2f15 a859794 aee2f15 a859794 aee2f15 a859794 aee2f15 a859794 aee2f15 a859794 aee2f15 a859794 aee2f15 a859794 373ed2b a859794 8e33c4a a859794 aee2f15 a859794 aee2f15 a859794 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 |
import io
import inspect
import os
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
import math
import torch
import random
import torch.nn.functional as F
import tempfile
import gradio as gr
import spaces
import httpimport
import json
from PIL import Image
from packaging import version
from PIL.PngImagePlugin import PngInfo
with httpimport.remote_repo(os.getenv("MODULE_URL")):
import pipeline
pipe, pipe2, pipe_img2img, pipe2_img2img = pipeline.get_pipeline_initialize()
theme = gr.themes.Base(font=[gr.themes.GoogleFont('Libre Franklin'), gr.themes.GoogleFont('Public Sans'), 'system-ui', 'sans-serif'])
device="cuda"
pipe = pipe.to(device)
pipe2 = pipe2.to(device)
PRESET_Q = "year_2022, best quality, high quality, very aesthetic"
NEGATIVE_PROMPT = "lowres, worst quality, displeasing, bad anatomy, text, error, extra digit, cropped, error, fewer, extra, missing, worst quality, jpeg artifacts, censored, worst quality displeasing, bad quality"
import hashlib
import base64
import hmac
import numpy as np
import pickle
import requests
import codecs
def tpu_inference_api(
prompt: str,
radio: str = "model-v2",
preset: str = "year_2022, best quality, high quality, very aesthetic",
h: int = 1216,
w: int = 832,
negative_prompt: str = "lowres, worst quality, displeasing, bad anatomy, text, error, extra digit, cropped, error, fewer, extra, missing, worst quality, jpeg artifacts, censored, ai-generated worst quality displeasing, bad quality",
guidance_scale: float = 4.0,
randomize_seed: bool = True,
seed: int = 42,
do_img2img: bool = False,
init_image: Optional[str] = None,
image2image_strength: float = 0,
inference_steps = 25,
) -> bytes:
url = os.getenv("TPU_INFERENCE_API")
if(randomize_seed):
seed = random.randint(0, 9007199254740991)
randomize_seed = False
payload = {
"prompt": prompt,
"radio": radio,
"preset": preset,
"height": h,
"width": w,
"negative_prompt": negative_prompt,
"guidance_scale": guidance_scale,
"randomize_seed": randomize_seed,
"seed": seed,
"do_img2img": do_img2img,
"image2image_strength": image2image_strength,
"init_image": init_image,
"inference_steps": inference_steps,
}
response = requests.post(url, json=payload)
if response.status_code != 200:
raise Exception(f"Error calling API: {response.status_code} - {response.text}")
image = Image.open(io.BytesIO(response.content))
naifix = prompt[:40].replace(":", "_").replace("\\", "_").replace("/", "_") + f" s-{seed}-"
with tempfile.NamedTemporaryFile(prefix=naifix, suffix=".png", delete=False) as tmpfile:
parameters = {
"prompt": prompt,
"steps": 25,
"height": h,
"width": w,
"scale": guidance_scale,
"uncond_scale": 0.0,
"cfg_rescale": 0.0,
"seed": seed,
"n_samples": 1,
"hide_debug_overlay": False,
"noise_schedule": "native",
"legacy_v3_extend": False,
"reference_information_extracted_multiple": [],
"reference_strength_multiple": [],
"sampler": "k_dpmpp_2m_sde",
"controlnet_strength": 1.0,
"controlnet_model": None,
"dynamic_thresholding": False,
"dynamic_thresholding_percentile": 0.999,
"dynamic_thresholding_mimic_scale": 10.0,
"sm": False,
"sm_dyn": False,
"skip_cfg_above_sigma": 23.69030960605558,
"skip_cfg_below_sigma": 0.0,
"lora_unet_weights": None,
"lora_clip_weights": None,
"deliberate_euler_ancestral_bug": True,
"prefer_brownian": False,
"cfg_sched_eligibility": "enable_for_post_summer_samplers",
"explike_fine_detail": False,
"minimize_sigma_inf": False,
"uncond_per_vibe": True,
"wonky_vibe_correlation": True,
"version": 1,
"uc": "nsfw, lowres, {bad}, error, fewer, extra, missing, worst quality, jpeg artifacts, bad quality, watermark, unfinished, displeasing, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract], lowres, {bad}, error, fewer, extra, missing, worst quality, jpeg artifacts, bad quality, unfinished, displeasing, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract],{{{{chibi,doll,+_+}}}},",
}
metadata_params = {
"request_type": "PromptGenerateRequest",
"signed_hash": sign_message(json.dumps(parameters), "novelai-client"),
**parameters
}
metadata = PngInfo()
metadata.add_text("Title", "AI generated image")
metadata.add_text("Description", prompt)
metadata.add_text("Software", "NovelAI")
metadata.add_text("Source", "Stable Diffusion XL 7BCCAA2C")
metadata.add_text("Nya", "Nya~")
metadata.add_text("Generation time", f"1.{random.randint(1000000000, 9999999999)}")
metadata.add_text("Comment", json.dumps(metadata_params))
image.save(tmpfile, "png", pnginfo=metadata)
return tmpfile.name, seed
def sign_message(message, key):
hmac_digest = hmac.new(key.encode(), message.encode(), hashlib.sha512).digest()
signed_hash = base64.b64encode(hmac_digest).decode()
return signed_hash
def run(prompt, radio="model-v2", preset=PRESET_Q, h=1216, w=832, negative_prompt=NEGATIVE_PROMPT, guidance_scale=4.0, randomize_seed=True, seed=42, tpu_inference=False, do_img2img=False, init_image=None, image2image_resize=False, image2image_strength=0, inference_steps=25, progress=gr.Progress(track_tqdm=True)):
if init_image is None:
do_img2img = False
if do_img2img and image2image_resize:
# init_image: np.ndarray
init_image = Image.fromarray(init_image)
init_image = init_image.resize((w, h))
init_image = np.array(init_image)
if tpu_inference:
prompt = prompt.replace("!", " ").replace("\n", " ") # remote endpoint unsupported
if do_img2img:
init_image = codecs.encode(pickle.dumps(init_image, protocol=pickle.HIGHEST_PROTOCOL), "base64").decode('latin1')
return tpu_inference_api(prompt, radio, preset, h, w, negative_prompt, guidance_scale, randomize_seed, seed, do_img2img, init_image, image2image_strength, inference_steps=inference_steps)
else:
return tpu_inference_api(prompt, radio, preset, h, w, negative_prompt, guidance_scale, randomize_seed, seed, inference_steps=inference_steps)
return zero_inference_api(prompt, radio, preset, h, w, negative_prompt, guidance_scale, randomize_seed, seed, do_img2img, init_image, image2image_strength, inference_steps=inference_steps)
@spaces.GPU
def zero_inference_api(prompt, radio="model-v2", preset=PRESET_Q, h=1216, w=832, negative_prompt=NEGATIVE_PROMPT, guidance_scale=4.0, randomize_seed=True, seed=42, do_img2img=False, init_image=None, image2image_strength=0, inference_steps=25, progress=gr.Progress(track_tqdm=True)):
prompt = prompt.strip() + ", " + preset.strip()
negative_prompt = negative_prompt.strip() if negative_prompt and negative_prompt.strip() else None
print(f"Initial seed for prompt `{prompt}`", seed)
if(randomize_seed):
seed = random.randint(0, 9007199254740991)
if not prompt and not negative_prompt:
guidance_scale = 0.0
generator = torch.Generator(device="cuda").manual_seed(seed)
if inference_steps > 50:
inference_steps = 50
if not do_img2img:
if radio == "model-v2":
image = pipe(prompt, height=h, width=w, negative_prompt=negative_prompt, guidance_scale=guidance_scale, guidance_rescale=0.75, generator=generator, num_inference_steps=inference_steps).images[0]
else:
image = pipe2(prompt, height=h, width=w, negative_prompt=negative_prompt, guidance_scale=guidance_scale, guidance_rescale=0.75, generator=generator, num_inference_steps=inference_steps).images[0]
else:
init_image = Image.fromarray(init_image)
if radio == "model-v2":
image = pipe_img2img(prompt, image=init_image, strength=image2image_strength, negative_prompt=negative_prompt, guidance_scale=guidance_scale, generator=generator, num_inference_steps=inference_steps).images[0]
else:
image = pipe2_img2img(prompt, image=init_image, strength=image2image_strength, negative_prompt=negative_prompt, guidance_scale=guidance_scale, generator=generator, num_inference_steps=inference_steps).images[0]
naifix = prompt[:40].replace(":", "_").replace("\\", "_").replace("/", "_") + f" s-{seed}-"
with tempfile.NamedTemporaryFile(prefix=naifix, suffix=".png", delete=False) as tmpfile:
parameters = {
"prompt": prompt,
"steps": inference_steps,
"height": h,
"width": w,
"scale": guidance_scale,
"uncond_scale": 0.0,
"cfg_rescale": 0.0,
"seed": seed,
"n_samples": 1,
"hide_debug_overlay": False,
"noise_schedule": "native",
"legacy_v3_extend": False,
"reference_information_extracted_multiple": [],
"reference_strength_multiple": [],
"sampler": "k_dpmpp_2m_sde",
"controlnet_strength": 1.0,
"controlnet_model": None,
"dynamic_thresholding": False,
"dynamic_thresholding_percentile": 0.999,
"dynamic_thresholding_mimic_scale": 10.0,
"sm": False,
"sm_dyn": False,
"skip_cfg_above_sigma": 23.69030960605558,
"skip_cfg_below_sigma": 0.0,
"lora_unet_weights": None,
"lora_clip_weights": None,
"deliberate_euler_ancestral_bug": True,
"prefer_brownian": False,
"cfg_sched_eligibility": "enable_for_post_summer_samplers",
"explike_fine_detail": False,
"minimize_sigma_inf": False,
"uncond_per_vibe": True,
"wonky_vibe_correlation": True,
"version": 1,
"uc": "nsfw, lowres, {bad}, error, fewer, extra, missing, worst quality, jpeg artifacts, bad quality, watermark, unfinished, displeasing, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract], lowres, {bad}, error, fewer, extra, missing, worst quality, jpeg artifacts, bad quality, unfinished, displeasing, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract],{{{{chibi,doll,+_+}}}},",
}
metadata_params = {
"request_type": "PromptGenerateRequest",
"signed_hash": sign_message(json.dumps(parameters), "novelai-client"),
**parameters
}
metadata = PngInfo()
metadata.add_text("Title", "AI generated image")
metadata.add_text("Description", prompt)
metadata.add_text("Software", "NovelAI")
metadata.add_text("Source", "Stable Diffusion XL 7BCCAA2C")
metadata.add_text("Nya", "Nya~")
metadata.add_text("Generation time", f"1.{random.randint(1000000000, 9999999999)}")
metadata.add_text("Comment", json.dumps(metadata_params))
image.save(tmpfile, "png", pnginfo=metadata)
return tmpfile.name, seed
with gr.Blocks(theme=theme) as demo:
gr.Markdown('''# SDXL Experiments
Just a simple demo for some SDXL model.''')
with gr.Row():
with gr.Column():
with gr.Group():
with gr.Row():
prompt = gr.Textbox(show_label=False, scale=5, value="1girl, rurudo", placeholder="Your prompt", info="Leave blank to test unconditional generation")
button = gr.Button("Generate", min_width=120)
preset = gr.Textbox(show_label=False, scale=5, value=PRESET_Q, info="Quality presets")
radio = gr.Radio(["model-v2-beta", "model-v2"], value="model-v2", label = "Choose the inference model")
inference_steps = gr.Slider(label="Inference Steps", value=25, minimum=4, maximum=50, step=1)
with gr.Row():
height = gr.Slider(label="Height", value=1216, minimum=512, maximum=2560, step=64)
width = gr.Slider(label="Width", value=832, minimum=512, maximum=2560, step=64)
guidance_scale = gr.Number(label="CFG Guidance Scale", info="The guidance scale for CFG, ignored if no prompt is entered (unconditional generation)", value=4.0)
negative_prompt = gr.Textbox(label="Negative prompt", value=NEGATIVE_PROMPT, info="Is only applied for the CFG part, leave blank for unconditional generation")
seed = gr.Number(label="Seed", value=42, info="Seed for random number generator")
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
tpu_inference = gr.Checkbox(label="TPU Inference", value=True)
do_img2img = gr.Checkbox(label="Image to Image", value=False)
init_image = gr.Image(label="Input Image", visible=False)
image2image_resize = gr.Checkbox(label="Resize input image", value=False, visible=False)
image2image_strength = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label="Noising strength", value=0.7, visible=False)
with gr.Column():
output = gr.Image(type="filepath", interactive=False)
gr.Examples(fn=run, examples=["mayano_top_gun_\(umamusume\), 1girl, rurudo", "sho (sho lwlw),[[[ohisashiburi]]],fukuro daizi,tianliang duohe fangdongye,[daidai ookami],year_2023, (wariza), depth of field, official_art"], inputs=prompt, outputs=[output, seed], cache_examples="lazy")
do_img2img.change(
fn=lambda x: [gr.update(visible=x), gr.update(visible=x), gr.update(visible=x)],
inputs=[do_img2img],
outputs=[init_image, image2image_resize, image2image_strength]
)
gr.on(
triggers=[
button.click,
prompt.submit
],
fn=run,
inputs=[prompt, radio, preset, height, width, negative_prompt, guidance_scale, randomize_seed, seed, tpu_inference, do_img2img, init_image, image2image_resize, image2image_strength, inference_steps],
outputs=[output, seed],
concurrency_limit=1,
)
if __name__ == "__main__":
demo.launch(share=True) |