File size: 23,507 Bytes
4b30d84
 
 
 
 
 
 
 
 
 
 
 
 
fe1ef83
4b30d84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
import random
import tempfile
import time
import gradio as gr
import numpy as np
import torch

from gradio import inputs
from diffusers import (
    AutoencoderKL,
    DDIMScheduler,
    UNet2DConditionModel,
)
from modules.model import CrossAttnProcessor, StableDiffusionPipeline, load_lora_attn_procs
from torchvision import transforms
from transformers import CLIPTokenizer, CLIPTextModel
from PIL import Image
from pathlib import Path
from safetensors.torch import load_file
import modules.safe as _

models = [
    ("AbyssOrangeMix_Base", "OrangeMix/AbyssOrangeMix2"),
]

base_name = "AbyssOrangeMix_Base"
base_model = "OrangeMix/AbyssOrangeMix2"

samplers_k_diffusion = [
    ("Euler a", "sample_euler_ancestral", {}),
    ("Euler", "sample_euler", {}),
    ("LMS", "sample_lms", {}),
    ("Heun", "sample_heun", {}),
    ("DPM2", "sample_dpm_2", {"discard_next_to_last_sigma": True}),
    ("DPM2 a", "sample_dpm_2_ancestral", {"discard_next_to_last_sigma": True}),
    ("DPM++ 2S a", "sample_dpmpp_2s_ancestral", {}),
    ("DPM++ 2M", "sample_dpmpp_2m", {}),
    ("DPM++ SDE", "sample_dpmpp_sde", {}),
    ("DPM fast", "sample_dpm_fast", {}),
    ("DPM adaptive", "sample_dpm_adaptive", {}),
    ("LMS Karras", "sample_lms", {"scheduler": "karras"}),
    (
        "DPM2 Karras",
        "sample_dpm_2",
        {"scheduler": "karras", "discard_next_to_last_sigma": True},
    ),
    (
        "DPM2 a Karras",
        "sample_dpm_2_ancestral",
        {"scheduler": "karras", "discard_next_to_last_sigma": True},
    ),
    ("DPM++ 2S a Karras", "sample_dpmpp_2s_ancestral", {"scheduler": "karras"}),
    ("DPM++ 2M Karras", "sample_dpmpp_2m", {"scheduler": "karras"}),
    ("DPM++ SDE Karras", "sample_dpmpp_sde", {"scheduler": "karras"}),
]

start_time = time.time()

scheduler = DDIMScheduler.from_pretrained(
    base_model,
    subfolder="scheduler",
)
vae = AutoencoderKL.from_pretrained(
    "stabilityai/sd-vae-ft-ema", 
    torch_dtype=torch.float32
)
text_encoder = CLIPTextModel.from_pretrained(
    base_model,
    subfolder="text_encoder",
    torch_dtype=torch.float32,
)
tokenizer = CLIPTokenizer.from_pretrained(
    base_model,
    subfolder="tokenizer",
    torch_dtype=torch.float32,
)
unet = UNet2DConditionModel.from_pretrained(
    base_model,
    subfolder="unet",
    torch_dtype=torch.float32,
)
pipe = StableDiffusionPipeline(
    text_encoder=text_encoder,
    tokenizer=tokenizer,
    unet=unet,
    vae=vae,
    scheduler=scheduler,
)

unet.set_attn_processor(CrossAttnProcessor)
if torch.cuda.is_available():
    pipe = pipe.to("cuda")
    
def get_model_list():
    model_available = []
    for model in models:
        if Path(model[1]).is_dir():
            model_available.append(model)
    return model_available


unet_cache = dict()


def get_model(name):
    keys = [k[0] for k in models]
    if name not in unet_cache:
        if name not in keys:
            raise ValueError(name)
        else:
            unet = UNet2DConditionModel.from_pretrained(
                models[keys.index(name)][1],
                subfolder="unet",
                torch_dtype=torch.float32,
            )
            unet_cache[name] = unet
    
    g_unet = unet_cache[name]
    g_unet.set_attn_processor(None)
    return g_unet


def error_str(error, title="Error"):
    return (
        f"""#### {title}
            {error}"""
        if error
        else ""
    )


te_base_weight = text_encoder.get_input_embeddings().weight.data.detach().clone()


def restore_all():
    global te_base_weight, tokenizer
    text_encoder.get_input_embeddings().weight.data = te_base_weight
    tokenizer = CLIPTokenizer.from_pretrained(
        "/root/workspace/storage/models/orangemix",
        subfolder="tokenizer",
        torch_dtype=torch.float16,
    )


def inference(
    prompt,
    guidance,
    steps,
    width=512,
    height=512,
    seed=0,
    neg_prompt="",
    state=None,
    g_strength=0.4,
    img_input=None,
    i2i_scale=0.5,
    hr_enabled=False,
    hr_method="Latent",
    hr_scale=1.5,
    hr_denoise=0.8,
    sampler="DPM++ 2M Karras",
    embs=None,
    model=None,
    lora_state=None,
    lora_scale=None,
):
    global pipe, unet, tokenizer, text_encoder
    if seed is None or seed == 0:
        seed = random.randint(0, 2147483647)
    if torch.cuda.is_available():
        generator = torch.Generator("cuda").manual_seed(int(seed))
    else:
        generator = torch.Generator().manual_seed(int(seed))
    
    local_unet = get_model(model)
    if lora_state is not None and lora_state != "":
        load_lora_attn_procs(lora_state, local_unet, lora_scale)
    else:
        local_unet.set_attn_processor(CrossAttnProcessor())

    pipe.setup_unet(local_unet)
    sampler_name, sampler_opt = None, None
    for label, funcname, options in samplers_k_diffusion:
        if label == sampler:
            sampler_name, sampler_opt = funcname, options

    if embs is not None and len(embs) > 0:
        delta_weight = []
        for name, file in embs.items():
            if str(file).endswith(".pt"):
                loaded_learned_embeds = torch.load(file, map_location="cpu")
            else:
                loaded_learned_embeds = load_file(file, device="cpu")
            loaded_learned_embeds = loaded_learned_embeds["string_to_param"]["*"]
            added_length = tokenizer.add_tokens(name)
            
            assert added_length == loaded_learned_embeds.shape[0]
            delta_weight.append(loaded_learned_embeds)

        delta_weight = torch.cat(delta_weight, dim=0)
        text_encoder.resize_token_embeddings(len(tokenizer))
        text_encoder.get_input_embeddings().weight.data[-delta_weight.shape[0]:] = delta_weight

    config = {
        "negative_prompt": neg_prompt,
        "num_inference_steps": int(steps),
        "guidance_scale": guidance,
        "generator": generator,
        "sampler_name": sampler_name,
        "sampler_opt": sampler_opt,
        "pww_state": state,
        "pww_attn_weight": g_strength,
    }

    if img_input is not None:
        ratio = min(height / img_input.height, width / img_input.width)
        img_input = img_input.resize(
            (int(img_input.width * ratio), int(img_input.height * ratio)), Image.LANCZOS
        )
        result = pipe.img2img(prompt, image=img_input, strength=i2i_scale, **config)
    elif hr_enabled:
        result = pipe.txt2img(
            prompt,
            width=width,
            height=height,
            upscale=True,
            upscale_x=hr_scale,
            upscale_denoising_strength=hr_denoise,
            **config,
            **latent_upscale_modes[hr_method],
        )
    else:
        result = pipe.txt2img(prompt, width=width, height=height, **config)

    # restore
    if embs is not None and len(embs) > 0:
        restore_all()
    return gr.Image.update(result[0][0], label=f"Initial Seed: {seed}")


color_list = []


def get_color(n):
    for _ in range(n - len(color_list)):
        color_list.append(tuple(np.random.random(size=3) * 256))
    return color_list


def create_mixed_img(current, state, w=512, h=512):
    w, h = int(w), int(h)
    image_np = np.full([h, w, 4], 255)
    colors = get_color(len(state))
    idx = 0

    for key, item in state.items():
        if item["map"] is not None:
            m = item["map"] < 255
            alpha = 150
            if current == key:
                alpha = 200
            image_np[m] = colors[idx] + (alpha,)
        idx += 1

    return image_np


# width.change(apply_new_res, inputs=[width, height, global_stats], outputs=[global_stats, sp, rendered])
def apply_new_res(w, h, state):
    w, h = int(w), int(h)

    for key, item in state.items():
        if item["map"] is not None:
            item["map"] = resize(item["map"], w, h)

    update_img = gr.Image.update(value=create_mixed_img("", state, w, h))
    return state, update_img


def detect_text(text, state, width, height):

    t = text.split(",")
    new_state = {}

    for item in t:
        item = item.strip()
        if item == "":
            continue
        if item in state:
            new_state[item] = {
                "map": state[item]["map"],
                "weight": state[item]["weight"],
            }
        else:
            new_state[item] = {
                "map": None,
                "weight": 0.5,
            }
    update = gr.Radio.update(choices=[key for key in new_state.keys()], value=None)
    update_img = gr.update(value=create_mixed_img("", new_state, width, height))
    update_sketch = gr.update(value=None, interactive=False)
    return new_state, update_sketch, update, update_img


def resize(img, w, h):
    trs = transforms.Compose(
        [
            transforms.ToPILImage(),
            transforms.Resize(min(h, w)),
            transforms.CenterCrop((h, w)),
        ]
    )
    result = np.array(trs(img), dtype=np.uint8)
    return result


def switch_canvas(entry, state, width, height):
    if entry == None:
        return None, 0.5, create_mixed_img("", state, width, height)
    return (
        gr.update(value=None, interactive=True),
        gr.update(value=state[entry]["weight"]),
        create_mixed_img(entry, state, width, height),
    )


def apply_canvas(selected, draw, state, w, h):
    w, h = int(w), int(h)
    state[selected]["map"] = resize(draw, w, h)
    return state, gr.Image.update(value=create_mixed_img(selected, state, w, h))


def apply_weight(selected, weight, state):
    state[selected]["weight"] = weight
    return state


# sp2, radio, width, height, global_stats
def apply_image(image, selected, w, h, strgength, state):
    if selected is not None:
        state[selected] = {"map": resize(image, w, h), "weight": strgength}
    return state, gr.Image.update(value=create_mixed_img(selected, state, w, h))


# [ti_state, lora_state, ti_vals, lora_vals, uploads]
def add_net(files: list[tempfile._TemporaryFileWrapper], ti_state, lora_state):
    if files is None:
        return ti_state, "", lora_state, None

    for file in files:
        item = Path(file.name)
        stripedname = str(item.stem).strip()
        if item.suffix == ".pt":
            state_dict = torch.load(file.name, map_location="cpu")
        else:
            state_dict = load_file(file.name, device="cpu")
        if any("lora" in k for k in state_dict.keys()):
            lora_state = file.name
        else:
            ti_state[stripedname] = file.name

    return ti_state, lora_state, gr.Text.update(f"{[key for key in ti_state.keys()]}"), gr.Text.update(f"{lora_state}"), gr.Files.update(value=None)

# [ti_state, lora_state, ti_vals, lora_vals, uploads]
def clean_states(ti_state, lora_state):
    return dict(), None, gr.Text.update(f""), gr.Text.update(f""), gr.File.update(value=None)


latent_upscale_modes = {
    "Latent": {"upscale_method": "bilinear", "upscale_antialias": False},
    "Latent (antialiased)": {"upscale_method": "bilinear", "upscale_antialias": True},
    "Latent (bicubic)": {"upscale_method": "bicubic", "upscale_antialias": False},
    "Latent (bicubic antialiased)": {
        "upscale_method": "bicubic",
        "upscale_antialias": True,
    },
    "Latent (nearest)": {"upscale_method": "nearest", "upscale_antialias": False},
    "Latent (nearest-exact)": {
        "upscale_method": "nearest-exact",
        "upscale_antialias": False,
    },
}

css = """
.finetuned-diffusion-div div{
    display:inline-flex;
    align-items:center;
    gap:.8rem;
    font-size:1.75rem;
    padding-top:2rem;
}
.finetuned-diffusion-div div h1{
    font-weight:900;
    margin-bottom:7px
}
.finetuned-diffusion-div p{
    margin-bottom:10px;
    font-size:94%
}
.box {
  float: left;
  height: 20px;
  width: 20px;
  margin-bottom: 15px;
  border: 1px solid black;
  clear: both;
}
a{
    text-decoration:underline
}
.tabs{
    margin-top:0;
    margin-bottom:0
}
#gallery{
    min-height:20rem
}
.no-border {
    border: none !important;
}
 """
with gr.Blocks(css=css) as demo:
    gr.HTML(
        f"""
            <div class="finetuned-diffusion-div">
              <div>
                <h1>Demo for diffusion models</h1>
              </div>
              <p>Hso @ nyanko.sketch2img.gradio</p>
            </div>
        """
    )
    global_stats = gr.State(value={})

    with gr.Row():

        with gr.Column(scale=55):
            model = gr.Dropdown(
                choices=[k[0] for k in get_model_list()],
                label="Model",
                value=base_name,
            )
            image_out = gr.Image(height=512)
        # gallery = gr.Gallery(
        #     label="Generated images", show_label=False, elem_id="gallery"
        # ).style(grid=[1], height="auto")

        with gr.Column(scale=45):

            with gr.Group():

                with gr.Row():
                    with gr.Column(scale=70):

                        prompt = gr.Textbox(
                            label="Prompt",
                            value="loli cat girl, blue eyes, flat chest, solo, long messy silver hair, blue capelet, garden, cat ears, cat tail, upper body",
                            show_label=True,
                            max_lines=4,
                            placeholder="Enter prompt.",
                        )
                        neg_prompt = gr.Textbox(
                            label="Negative Prompt",
                            value="bad quality, low quality, jpeg artifact, cropped",
                            show_label=True,
                            max_lines=4,
                            placeholder="Enter negative prompt.",
                        )

                    generate = gr.Button(value="Generate").style(
                        rounded=(False, True, True, False)
                    )

            with gr.Tab("Options"):

                with gr.Group():

                    # n_images = gr.Slider(label="Images", value=1, minimum=1, maximum=4, step=1)
                    with gr.Row():
                        guidance = gr.Slider(
                            label="Guidance scale", value=7.5, maximum=15
                        )
                        steps = gr.Slider(
                            label="Steps", value=25, minimum=2, maximum=75, step=1
                        )

                    with gr.Row():
                        width = gr.Slider(
                            label="Width", value=512, minimum=64, maximum=2048, step=64
                        )
                        height = gr.Slider(
                            label="Height", value=512, minimum=64, maximum=2048, step=64
                        )

                    sampler = gr.Dropdown(
                        value="DPM++ 2M Karras",
                        label="Sampler",
                        choices=[s[0] for s in samplers_k_diffusion],
                    )
                    seed = gr.Number(label="Seed (0 = random)", value=0)

            with gr.Tab("Image to image"):
                with gr.Group():

                    inf_image = gr.Image(
                        label="Image", height=256, tool="editor", type="pil"
                    )
                    inf_strength = gr.Slider(
                        label="Transformation strength",
                        minimum=0,
                        maximum=1,
                        step=0.01,
                        value=0.5,
                    )

            def res_cap(g, w, h, x):
                if g:
                    return f"Enable upscaler: {w}x{h} to {int(w*x)}x{int(h*x)}"
                else:
                    return "Enable upscaler"

            with gr.Tab("Hires fix"):
                with gr.Group():

                    hr_enabled = gr.Checkbox(label="Enable upscaler", value=False)
                    hr_method = gr.Dropdown(
                        [key for key in latent_upscale_modes.keys()],
                        value="Latent",
                        label="Upscale method",
                    )
                    hr_scale = gr.Slider(
                        label="Upscale factor",
                        minimum=1.0,
                        maximum=3,
                        step=0.1,
                        value=1.5,
                    )
                    hr_denoise = gr.Slider(
                        label="Denoising strength",
                        minimum=0.0,
                        maximum=1.0,
                        step=0.1,
                        value=0.8,
                    )

                    hr_scale.change(
                        lambda g, x, w, h: gr.Checkbox.update(
                            label=res_cap(g, w, h, x)
                        ),
                        inputs=[hr_enabled, hr_scale, width, height],
                        outputs=hr_enabled,
                    )
                    hr_enabled.change(
                        lambda g, x, w, h: gr.Checkbox.update(
                            label=res_cap(g, w, h, x)
                        ),
                        inputs=[hr_enabled, hr_scale, width, height],
                        outputs=hr_enabled,
                    )

            with gr.Tab("Embeddings/Loras"):

                ti_state = gr.State(dict())
                lora_state = gr.State()

                with gr.Group():
                    with gr.Row():
                        with gr.Column(scale=90):
                            ti_vals = gr.Text(label="Loaded embeddings")
                        
                    with gr.Row():
                        with gr.Column(scale=90):
                            lora_vals = gr.Text(label="Loaded loras")

                with gr.Row():
                        
                    uploads = gr.Files(label="Upload new embeddings/lora")
                    
                    with gr.Column():
                        lora_scale = gr.Slider(
                            label="Lora scale",
                            minimum=0,
                            maximum=2,
                            step=0.01,
                            value=1.0,
                        )
                        btn = gr.Button(value="Upload")
                        btn_del = gr.Button(value="Reset")
                        
                btn.click(
                    add_net, inputs=[uploads, ti_state, lora_state], outputs=[ti_state, lora_state, ti_vals, lora_vals, uploads]
                )
                btn_del.click(
                    clean_states, inputs=[ti_state, lora_state], outputs=[ti_state, lora_state, ti_vals, lora_vals, uploads]
                )

        # error_output = gr.Markdown()

    gr.HTML(
        f"""
            <div class="finetuned-diffusion-div">
              <div>
                <h1>Paint with words</h1>
              </div>
              <p>
                Will use the following formula: w = scale * token_weight_martix * log(1 + sigma) * max(qk).
              </p>
            </div>
        """
    )

    with gr.Row():

        with gr.Column(scale=55):

            rendered = gr.Image(
                invert_colors=True,
                source="canvas",
                interactive=False,
                image_mode="RGBA",
            )

        with gr.Column(scale=45):

            with gr.Group():
                with gr.Row():
                    with gr.Column(scale=70):
                        g_strength = gr.Slider(
                            label="Weight scaling",
                            minimum=0,
                            maximum=0.8,
                            step=0.01,
                            value=0.4,
                        )

                        text = gr.Textbox(
                            lines=2,
                            interactive=True,
                            label="Token to Draw: (Separate by comma)",
                        )

                        radio = gr.Radio([], label="Tokens")

                    sk_update = gr.Button(value="Update").style(
                        rounded=(False, True, True, False)
                    )

                # g_strength.change(lambda b: gr.update(f"Scaled additional attn: $w = {b} \log (1 + \sigma) \std (Q^T K)$."), inputs=g_strength, outputs=[g_output])

            with gr.Tab("SketchPad"):

                sp = gr.Image(
                    image_mode="L",
                    tool="sketch",
                    source="canvas",
                    interactive=False,
                )

                strength = gr.Slider(
                    label="Token strength",
                    minimum=0,
                    maximum=0.8,
                    step=0.01,
                    value=0.5,
                )

                sk_update.click(
                    detect_text,
                    inputs=[text, global_stats, width, height],
                    outputs=[global_stats, sp, radio, rendered],
                )
                radio.change(
                    switch_canvas,
                    inputs=[radio, global_stats, width, height],
                    outputs=[sp, strength, rendered],
                )
                sp.edit(
                    apply_canvas,
                    inputs=[radio, sp, global_stats, width, height],
                    outputs=[global_stats, rendered],
                )
                strength.change(
                    apply_weight,
                    inputs=[radio, strength, global_stats],
                    outputs=[global_stats],
                )

            with gr.Tab("UploadFile"):

                sp2 = gr.Image(
                    image_mode="L",
                    source="upload",
                    shape=(512, 512),
                )

                strength2 = gr.Slider(
                    label="Token strength",
                    minimum=0,
                    maximum=0.8,
                    step=0.01,
                    value=0.5,
                )

                apply_style = gr.Button(value="Apply")
                apply_style.click(
                    apply_image,
                    inputs=[sp2, radio, width, height, strength2, global_stats],
                    outputs=[global_stats, rendered],
                )

            width.change(
                apply_new_res,
                inputs=[width, height, global_stats],
                outputs=[global_stats, rendered],
            )
            height.change(
                apply_new_res,
                inputs=[width, height, global_stats],
                outputs=[global_stats, rendered],
            )

    # color_stats = gr.State(value={})
    # text.change(detect_color, inputs=[sp, text, color_stats], outputs=[color_stats, rendered])
    # sp.change(detect_color, inputs=[sp, text, color_stats], outputs=[color_stats, rendered])

    inputs = [
        prompt,
        guidance,
        steps,
        width,
        height,
        seed,
        neg_prompt,
        global_stats,
        g_strength,
        inf_image,
        inf_strength,
        hr_enabled,
        hr_method,
        hr_scale,
        hr_denoise,
        sampler,
        ti_state,
        model,
        lora_state,
        lora_scale
    ]
    outputs = [image_out]
    prompt.submit(inference, inputs=inputs, outputs=outputs)
    generate.click(inference, inputs=inputs, outputs=outputs)

print(f"Space built in {time.time() - start_time:.2f} seconds")
# demo.launch(share=True)
demo.launch(share=True, enable_queue=True)