File size: 6,443 Bytes
4b05fc5 3965803 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 |
import streamlit as st
import pandas as pd
import numpy as np
from sentence_transformers import SentenceTransformer
from sklearn.metrics.pairwise import cosine_similarity
import json
from typing import List, Dict
import logging
from pathlib import Path
class CourseSearchSystem:
def __init__(self, model_name: str = 'all-MiniLM-L6-v2'):
self.model = SentenceTransformer(model_name)
self.courses_df = None
self.embeddings = None
self.setup_logging()
def setup_logging(self):
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s',
handlers=[
logging.FileHandler('search_system.log'),
logging.StreamHandler()
]
)
self.logger = logging.getLogger(__name__)
def load_courses(self, courses_data: List[Dict]):
self.courses_df = pd.DataFrame(courses_data)
self.courses_df['search_text'] = self.courses_df.apply(
lambda x: f"{x['title']} {' '.join(x['categories'])}",
axis=1
)
self.logger.info("Generating course embeddings...")
self.embeddings = self.model.encode(
self.courses_df['search_text'].tolist(),
convert_to_tensor=True
)
self.logger.info("Embeddings generated successfully")
def search(self, query: str, top_k: int = 5) -> pd.DataFrame:
query_embedding = self.model.encode(query, convert_to_tensor=True)
similarities = cosine_similarity(
query_embedding.cpu().numpy().reshape(1, -1),
self.embeddings.cpu().numpy()
)[0]
top_indices = np.argsort(similarities)[-top_k:][::-1]
results = self.courses_df.iloc[top_indices].copy()
results['similarity_score'] = similarities[top_indices]
return results
def load_search_system():
search_system = CourseSearchSystem()
try:
courses_file = Path('courses.json')
if not courses_file.exists():
st.error("Course data not found. Please run the scraper first.")
st.stop()
with open(courses_file, 'r', encoding='utf-8') as f:
courses = json.load(f)
search_system.load_courses(courses)
return search_system
except Exception as e:
st.error(f"Error loading course data: {str(e)}")
st.stop()
def render_course_card(course: pd.Series):
with st.container():
col1, col2 = st.columns([1, 3])
with col1:
if course['image_url']:
st.image(course['image_url'], width=200)
else:
st.image("https://via.placeholder.com/200x150", width=200)
with col2:
st.markdown(f"### [{course['title']}]({course['url']})")
# Categories
if course['categories']:
st.markdown("**Categories:** " + ", ".join(course['categories']))
# Course details
cols = st.columns(3)
with cols[0]:
st.metric("Lessons", course['lesson_count'])
with cols[1]:
st.metric("Reviews", course['rating_count'])
with cols[2]:
st.metric("Price", course['price'])
# Similarity score if available
if 'similarity_score' in course:
st.progress(float(course['similarity_score']))
st.caption(f"Relevance: {course['similarity_score']:.1%}")
def main():
st.set_page_config(
page_title="Analytics Vidhya Course Search",
page_icon="π",
layout="wide"
)
# Header
st.title("π Analytics Vidhya Course Search")
st.markdown("""
Find the perfect course for your learning journey! This smart search system helps you discover
relevant courses from Analytics Vidhya's free course catalog.
""")
search_system = load_search_system()
# Search UI
with st.container():
col1, col2 = st.columns([3, 1])
with col1:
search_query = st.text_input(
"π What would you like to learn?",
placeholder="E.g., 'machine learning', 'python', 'data science'"
)
with col2:
num_results = st.slider("Number of results", 1, 10, 5)
# Filters
with st.expander("Advanced Filters"):
col1, col2 = st.columns(2)
with col1:
all_categories = set()
for cats in search_system.courses_df['categories'].tolist():
all_categories.update(cats)
selected_categories = st.multiselect(
"Filter by Category",
sorted(list(all_categories))
)
with col2:
show_only_free = st.checkbox("Show Only Free Courses", value=True)
# Search results
if search_query:
results = search_system.search(search_query, top_k=num_results)
if selected_categories:
results = results[results['categories'].apply(
lambda x: any(cat in x for cat in selected_categories)
)]
if show_only_free:
results = results[results['price'].str.contains('Free', case=False)]
if len(results) > 0:
st.markdown(f"### π― Found {len(results)} relevant courses")
# Display results
for _, course in results.iterrows():
render_course_card(course)
st.divider()
else:
st.info("No courses found matching your criteria. Try adjusting your search or filters.")
else:
# Display all courses when no search query
st.markdown("### π All Available Courses")
results = search_system.courses_df
# Apply filters
if selected_categories:
results = results[results['categories'].apply(
lambda x: any(cat in x for cat in selected_categories)
)]
if show_only_free:
results = results[results['price'].str.contains('Free', case=False)]
for _, course in results.iterrows():
render_course_card(course)
st.divider()
if __name__ == "__main__":
main() |