File size: 12,242 Bytes
e2a260e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
import torch
from torch.nn.functional import silu
from types import MethodType

import modules.textual_inversion.textual_inversion
from modules import devices, sd_hijack_optimizations, shared, sd_hijack_checkpoint
from modules.hypernetworks import hypernetwork
from modules.shared import cmd_opts
from modules import sd_hijack_clip, sd_hijack_open_clip, sd_hijack_unet, sd_hijack_xlmr, xlmr

import ldm.modules.attention
import ldm.modules.diffusionmodules.model
import ldm.modules.diffusionmodules.openaimodel
import ldm.models.diffusion.ddim
import ldm.models.diffusion.plms
import ldm.modules.encoders.modules

attention_CrossAttention_forward = ldm.modules.attention.CrossAttention.forward
diffusionmodules_model_nonlinearity = ldm.modules.diffusionmodules.model.nonlinearity
diffusionmodules_model_AttnBlock_forward = ldm.modules.diffusionmodules.model.AttnBlock.forward

# new memory efficient cross attention blocks do not support hypernets and we already
# have memory efficient cross attention anyway, so this disables SD2.0's memory efficient cross attention
ldm.modules.attention.MemoryEfficientCrossAttention = ldm.modules.attention.CrossAttention
ldm.modules.attention.BasicTransformerBlock.ATTENTION_MODES["softmax-xformers"] = ldm.modules.attention.CrossAttention

# silence new console spam from SD2
ldm.modules.attention.print = lambda *args: None
ldm.modules.diffusionmodules.model.print = lambda *args: None


def apply_optimizations():
    undo_optimizations()

    ldm.modules.diffusionmodules.model.nonlinearity = silu
    ldm.modules.diffusionmodules.openaimodel.th = sd_hijack_unet.th
    
    optimization_method = None

    can_use_sdp = hasattr(torch.nn.functional, "scaled_dot_product_attention") and callable(getattr(torch.nn.functional, "scaled_dot_product_attention")) # not everyone has torch 2.x to use sdp

    if cmd_opts.force_enable_xformers or (cmd_opts.xformers and shared.xformers_available and torch.version.cuda and (6, 0) <= torch.cuda.get_device_capability(shared.device) <= (9, 0)):
        print("Applying xformers cross attention optimization.")
        ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.xformers_attention_forward
        ldm.modules.diffusionmodules.model.AttnBlock.forward = sd_hijack_optimizations.xformers_attnblock_forward
        optimization_method = 'xformers'
    elif cmd_opts.opt_sdp_no_mem_attention and can_use_sdp:
        print("Applying scaled dot product cross attention optimization (without memory efficient attention).")
        ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.scaled_dot_product_no_mem_attention_forward
        ldm.modules.diffusionmodules.model.AttnBlock.forward = sd_hijack_optimizations.sdp_no_mem_attnblock_forward
        optimization_method = 'sdp-no-mem'
    elif cmd_opts.opt_sdp_attention and can_use_sdp:
        print("Applying scaled dot product cross attention optimization.")
        ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.scaled_dot_product_attention_forward
        ldm.modules.diffusionmodules.model.AttnBlock.forward = sd_hijack_optimizations.sdp_attnblock_forward
        optimization_method = 'sdp'
    elif cmd_opts.opt_sub_quad_attention:
        print("Applying sub-quadratic cross attention optimization.")
        ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.sub_quad_attention_forward
        ldm.modules.diffusionmodules.model.AttnBlock.forward = sd_hijack_optimizations.sub_quad_attnblock_forward
        optimization_method = 'sub-quadratic'
    elif cmd_opts.opt_split_attention_v1:
        print("Applying v1 cross attention optimization.")
        ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.split_cross_attention_forward_v1
        optimization_method = 'V1'
    elif not cmd_opts.disable_opt_split_attention and (cmd_opts.opt_split_attention_invokeai or not cmd_opts.opt_split_attention and not torch.cuda.is_available()):
        print("Applying cross attention optimization (InvokeAI).")
        ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.split_cross_attention_forward_invokeAI
        optimization_method = 'InvokeAI'
    elif not cmd_opts.disable_opt_split_attention and (cmd_opts.opt_split_attention or torch.cuda.is_available()):
        print("Applying cross attention optimization (Doggettx).")
        ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.split_cross_attention_forward
        ldm.modules.diffusionmodules.model.AttnBlock.forward = sd_hijack_optimizations.cross_attention_attnblock_forward
        optimization_method = 'Doggettx'

    return optimization_method


def undo_optimizations():
    ldm.modules.attention.CrossAttention.forward = hypernetwork.attention_CrossAttention_forward
    ldm.modules.diffusionmodules.model.nonlinearity = diffusionmodules_model_nonlinearity
    ldm.modules.diffusionmodules.model.AttnBlock.forward = diffusionmodules_model_AttnBlock_forward


def fix_checkpoint():
    """checkpoints are now added and removed in embedding/hypernet code, since torch doesn't want
    checkpoints to be added when not training (there's a warning)"""

    pass


def weighted_loss(sd_model, pred, target, mean=True):
    #Calculate the weight normally, but ignore the mean
    loss = sd_model._old_get_loss(pred, target, mean=False)
    
    #Check if we have weights available
    weight = getattr(sd_model, '_custom_loss_weight', None)
    if weight is not None:
        loss *= weight
    
    #Return the loss, as mean if specified
    return loss.mean() if mean else loss

def weighted_forward(sd_model, x, c, w, *args, **kwargs):
    try:
        #Temporarily append weights to a place accessible during loss calc
        sd_model._custom_loss_weight = w
        
        #Replace 'get_loss' with a weight-aware one. Otherwise we need to reimplement 'forward' completely
        #Keep 'get_loss', but don't overwrite the previous old_get_loss if it's already set
        if not hasattr(sd_model, '_old_get_loss'):
            sd_model._old_get_loss = sd_model.get_loss
        sd_model.get_loss = MethodType(weighted_loss, sd_model)

        #Run the standard forward function, but with the patched 'get_loss'
        return sd_model.forward(x, c, *args, **kwargs)
    finally:
        try:
            #Delete temporary weights if appended
            del sd_model._custom_loss_weight
        except AttributeError as e:
            pass
            
        #If we have an old loss function, reset the loss function to the original one
        if hasattr(sd_model, '_old_get_loss'):
            sd_model.get_loss = sd_model._old_get_loss
            del sd_model._old_get_loss

def apply_weighted_forward(sd_model):
    #Add new function 'weighted_forward' that can be called to calc weighted loss
    sd_model.weighted_forward = MethodType(weighted_forward, sd_model)

def undo_weighted_forward(sd_model):
    try:
        del sd_model.weighted_forward
    except AttributeError as e:
        pass


class StableDiffusionModelHijack:
    fixes = None
    comments = []
    layers = None
    circular_enabled = False
    clip = None
    optimization_method = None

    embedding_db = modules.textual_inversion.textual_inversion.EmbeddingDatabase()

    def __init__(self):
        self.embedding_db.add_embedding_dir(cmd_opts.embeddings_dir)

    def hijack(self, m):
        if type(m.cond_stage_model) == xlmr.BertSeriesModelWithTransformation:
            model_embeddings = m.cond_stage_model.roberta.embeddings
            model_embeddings.token_embedding = EmbeddingsWithFixes(model_embeddings.word_embeddings, self)
            m.cond_stage_model = sd_hijack_xlmr.FrozenXLMREmbedderWithCustomWords(m.cond_stage_model, self)

        elif type(m.cond_stage_model) == ldm.modules.encoders.modules.FrozenCLIPEmbedder:
            model_embeddings = m.cond_stage_model.transformer.text_model.embeddings
            model_embeddings.token_embedding = EmbeddingsWithFixes(model_embeddings.token_embedding, self)
            m.cond_stage_model = sd_hijack_clip.FrozenCLIPEmbedderWithCustomWords(m.cond_stage_model, self)

        elif type(m.cond_stage_model) == ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder:
            m.cond_stage_model.model.token_embedding = EmbeddingsWithFixes(m.cond_stage_model.model.token_embedding, self)
            m.cond_stage_model = sd_hijack_open_clip.FrozenOpenCLIPEmbedderWithCustomWords(m.cond_stage_model, self)

        apply_weighted_forward(m)
        if m.cond_stage_key == "edit":
            sd_hijack_unet.hijack_ddpm_edit()

        self.optimization_method = apply_optimizations()

        self.clip = m.cond_stage_model

        def flatten(el):
            flattened = [flatten(children) for children in el.children()]
            res = [el]
            for c in flattened:
                res += c
            return res

        self.layers = flatten(m)

    def undo_hijack(self, m):
        if type(m.cond_stage_model) == xlmr.BertSeriesModelWithTransformation:
            m.cond_stage_model = m.cond_stage_model.wrapped 

        elif type(m.cond_stage_model) == sd_hijack_clip.FrozenCLIPEmbedderWithCustomWords:
            m.cond_stage_model = m.cond_stage_model.wrapped

            model_embeddings = m.cond_stage_model.transformer.text_model.embeddings
            if type(model_embeddings.token_embedding) == EmbeddingsWithFixes:
                model_embeddings.token_embedding = model_embeddings.token_embedding.wrapped
        elif type(m.cond_stage_model) == sd_hijack_open_clip.FrozenOpenCLIPEmbedderWithCustomWords:
            m.cond_stage_model.wrapped.model.token_embedding = m.cond_stage_model.wrapped.model.token_embedding.wrapped
            m.cond_stage_model = m.cond_stage_model.wrapped

        undo_optimizations()
        undo_weighted_forward(m)

        self.apply_circular(False)
        self.layers = None
        self.clip = None

    def apply_circular(self, enable):
        if self.circular_enabled == enable:
            return

        self.circular_enabled = enable

        for layer in [layer for layer in self.layers if type(layer) == torch.nn.Conv2d]:
            layer.padding_mode = 'circular' if enable else 'zeros'

    def clear_comments(self):
        self.comments = []

    def get_prompt_lengths(self, text):
        _, token_count = self.clip.process_texts([text])

        return token_count, self.clip.get_target_prompt_token_count(token_count)


class EmbeddingsWithFixes(torch.nn.Module):
    def __init__(self, wrapped, embeddings):
        super().__init__()
        self.wrapped = wrapped
        self.embeddings = embeddings

    def forward(self, input_ids):
        batch_fixes = self.embeddings.fixes
        self.embeddings.fixes = None

        inputs_embeds = self.wrapped(input_ids)

        if batch_fixes is None or len(batch_fixes) == 0 or max([len(x) for x in batch_fixes]) == 0:
            return inputs_embeds

        vecs = []
        for fixes, tensor in zip(batch_fixes, inputs_embeds):
            for offset, embedding in fixes:
                emb = devices.cond_cast_unet(embedding.vec)
                emb_len = min(tensor.shape[0] - offset - 1, emb.shape[0])
                tensor = torch.cat([tensor[0:offset + 1], emb[0:emb_len], tensor[offset + 1 + emb_len:]])

            vecs.append(tensor)

        return torch.stack(vecs)


def add_circular_option_to_conv_2d():
    conv2d_constructor = torch.nn.Conv2d.__init__

    def conv2d_constructor_circular(self, *args, **kwargs):
        return conv2d_constructor(self, *args, padding_mode='circular', **kwargs)

    torch.nn.Conv2d.__init__ = conv2d_constructor_circular


model_hijack = StableDiffusionModelHijack()


def register_buffer(self, name, attr):
    """
    Fix register buffer bug for Mac OS.
    """

    if type(attr) == torch.Tensor:
        if attr.device != devices.device:
            attr = attr.to(device=devices.device, dtype=(torch.float32 if devices.device.type == 'mps' else None))

    setattr(self, name, attr)


ldm.models.diffusion.ddim.DDIMSampler.register_buffer = register_buffer
ldm.models.diffusion.plms.PLMSSampler.register_buffer = register_buffer