File size: 22,511 Bytes
53ea588
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76744fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53ea588
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e832043
 
 
53ea588
 
 
b38ed38
 
0f2bb6a
 
 
 
b38ed38
 
53ea588
 
 
 
 
 
e832043
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53ea588
e832043
 
 
 
 
 
53ea588
e832043
53ea588
e832043
 
53ea588
e832043
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b38ed38
 
 
 
 
 
53ea588
b38ed38
 
53ea588
 
b38ed38
 
53ea588
 
e832043
53ea588
e832043
 
 
 
 
 
 
 
 
 
 
b38ed38
e832043
 
 
 
18a808f
 
 
e832043
53ea588
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76744fc
 
 
53ea588
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7f4c65
e821a83
 
76744fc
e821a83
76744fc
 
e821a83
76744fc
 
 
 
 
 
 
e821a83
 
b7f4c65
 
 
 
 
 
53ea588
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
# SPDX-FileCopyrightText: Copyright (c) 2024-2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: BSD 2-Clause License

"""Voice Agent WebRTC Pipeline.

This module implements a voice agent pipeline using WebRTC for real-time
speech-to-speech communication with dynamic prompt support.
"""

import argparse
import asyncio
import json
import os
import sys
import uuid
from pathlib import Path

import uvicorn
from dotenv import load_dotenv
from fastapi import FastAPI, WebSocket, WebSocketDisconnect, Request
from fastapi.responses import JSONResponse
from fastapi.staticfiles import StaticFiles
from fastapi.middleware.cors import CORSMiddleware
from loguru import logger
from pipecat.audio.vad.silero import SileroVADAnalyzer
from pipecat.frames.frames import InputAudioRawFrame, LLMMessagesFrame, TTSAudioRawFrame
from pipecat.pipeline.pipeline import Pipeline
from pipecat.pipeline.runner import PipelineRunner
from pipecat.pipeline.task import PipelineParams, PipelineTask
from pipecat.processors.aggregators.openai_llm_context import OpenAILLMContext
from pipecat.transports.base_transport import TransportParams
from pipecat.transports.network.small_webrtc import SmallWebRTCTransport
from pipecat.transports.network.webrtc_connection import (
    IceServer,
    SmallWebRTCConnection,
)
from websocket_transcript_output import WebsocketTranscriptOutput

from nvidia_pipecat.processors.audio_util import AudioRecorder
from nvidia_pipecat.processors.nvidia_context_aggregator import (
    NvidiaTTSResponseCacher,
    create_nvidia_context_aggregator,
)
from nvidia_pipecat.processors.transcript_synchronization import (
    BotTranscriptSynchronization,
    UserTranscriptSynchronization,
)
from nvidia_pipecat.services.riva_speech import RivaASRService, RivaTTSService
from langgraph_llm_service import LangGraphLLMService

load_dotenv(override=True)


app = FastAPI()

app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

# Store connections by pc_id
pcs_map: dict[str, SmallWebRTCConnection] = {}
contexts_map: dict[str, OpenAILLMContext] = {}


# Helper: Build ICE servers for client (browser) using Twilio token if configured
def _build_client_ice_servers() -> list[dict]:
    # Prefer Twilio dynamic credentials
    sid = os.getenv("TWILIO_ACCOUNT_SID")
    tok = os.getenv("TWILIO_AUTH_TOKEN")
    if sid and tok:
        try:
            # Import lazily to avoid hard dependency when not configured
            from twilio.rest import Client  # type: ignore

            client = Client(sid, tok)
            token = client.tokens.create()
            servers: list[dict] = []
            # Twilio may return either 'ice_servers' with 'url' or 'urls'
            for s in getattr(token, "ice_servers", []) or []:
                url_val = s.get("urls") if isinstance(s, dict) else getattr(s, "urls", None)
                if not url_val:
                    url_val = s.get("url") if isinstance(s, dict) else getattr(s, "url", None)
                entry: dict = {"urls": url_val}
                u = s.get("username") if isinstance(s, dict) else getattr(s, "username", None)
                c = s.get("credential") if isinstance(s, dict) else getattr(s, "credential", None)
                if u:
                    entry["username"] = u
                if c:
                    entry["credential"] = c
                if entry.get("urls"):
                    servers.append(entry)
            # Always include a public STUN fallback
            servers.append({"urls": "stun:stun.l.google.com:19302"})
            return servers
        except Exception as e:  # noqa: BLE001
            logger.warning(f"Twilio TURN fetch failed, falling back to env/static: {e}")
    # Static env fallback
    servers: list[dict] = []
    turn_url = os.getenv("TURN_SERVER_URL") or os.getenv("TURN_URL")
    turn_user = os.getenv("TURN_USERNAME") or os.getenv("TURN_USER")
    turn_pass = os.getenv("TURN_PASSWORD") or os.getenv("TURN_PASS")
    if turn_url:
        server: dict = {"urls": turn_url}
        if turn_user:
            server["username"] = turn_user
        if turn_pass:
            server["credential"] = turn_pass
        servers.append(server)
    servers.append({"urls": "stun:stun.l.google.com:19302"})
    return servers


# Helper: Convert client ICE dicts to server IceServer objects
def _build_server_ice_servers() -> list[IceServer]:
    out: list[IceServer] = []
    for s in _build_client_ice_servers():
        urls = s.get("urls")
        username = s.get("username", "")
        credential = s.get("credential", "")
        # urls may be a list or a string. Normalize to list for safety.
        if isinstance(urls, list):
            for u in urls:
                out.append(IceServer(urls=u, username=username, credential=credential))
        elif isinstance(urls, str) and urls:
            out.append(IceServer(urls=urls, username=username, credential=credential))
    return out


# Backward-compatible static servers (unused when Twilio configured)
ice_servers = (
    [
        IceServer(
            urls=os.getenv("TURN_SERVER_URL", ""),
            username=os.getenv("TURN_USERNAME", ""),
            credential=os.getenv("TURN_PASSWORD", ""),
        )
    ]
    if os.getenv("TURN_SERVER_URL")
    else []
)


@app.get("/assistants")
async def list_assistants(request: Request):
    """Return a list of assistants from LangGraph, with robust fallbacks.

    Output: List of {assistant_id, graph_id?, name?, description?, display_name}.
    """
    import requests

    # Custom display name mappings for specific agents
    DISPLAY_NAME_OVERRIDES = {
        "rbc-fees-agent": "Banking: Fee Agent",
        "wire-transfer-agent": "Banking: Wire Transfer Agent",
        "telco-agent": "Telco: Mobile Billing Agent",
        "healthcare-agent": "Healthcare: Patient Intake",
    }

    base_url = os.getenv("LANGGRAPH_BASE_URL", "http://127.0.0.1:2024").rstrip("/")

    inbound_auth = request.headers.get("authorization")
    token = os.getenv("LANGGRAPH_AUTH_TOKEN") or os.getenv("AUTH0_ACCESS_TOKEN") or os.getenv("AUTH_BEARER_TOKEN")
    headers = {"Authorization": inbound_auth} if inbound_auth else ({"Authorization": f"Bearer {token}"} if token else None)

    def normalize_entries(raw_items: list) -> list[dict]:
        results: list[dict] = []
        for entry in raw_items:
            assistant_id = None
            if isinstance(entry, dict):
                assistant_id = entry.get("assistant_id") or entry.get("id") or entry.get("name")
            elif isinstance(entry, str):
                assistant_id = entry
            if not assistant_id:
                continue
            results.append({"assistant_id": assistant_id, **(entry if isinstance(entry, dict) else {})})
        return results

    # Try GET /assistants first (newer servers)
    items: list[dict] = []
    try:
        get_resp = requests.get(f"{base_url}/assistants", params={"limit": 100}, timeout=8, headers=headers)
        if get_resp.ok:
            data = get_resp.json() or []
            if isinstance(data, dict):
                data = data.get("items") or data.get("results") or data.get("assistants") or []
            items = normalize_entries(data)
    except Exception as exc:  # noqa: BLE001
        logger.warning(f"GET /assistants failed: {exc}")

    # Fallback: POST /assistants/search (older servers)
    if not items:
        try:
            search_resp = requests.post(
                f"{base_url}/assistants/search",
                json={
                    "metadata": {},
                    "limit": 100,
                    "offset": 0,
                    "sort_by": "assistant_id",
                    "sort_order": "asc",
                    "select": ["assistant_id"],
                },
                timeout=10,
                headers=headers,
            )
            if search_resp.ok:
                data = search_resp.json() or []
                if isinstance(data, dict):
                    data = data.get("items") or data.get("results") or []
                items = normalize_entries(data)
        except Exception as exc:  # noqa: BLE001
            logger.warning(f"POST /assistants/search failed: {exc}")

    # Best-effort: enrich with details when possible
    enriched: list[dict] = []
    for item in items:
        detail = dict(item)
        assistant_id = detail.get("assistant_id")
        if assistant_id:
            try:
                detail_resp = requests.get(f"{base_url}/assistants/{assistant_id}", timeout=5, headers=headers)
                if detail_resp.ok:
                    d = detail_resp.json() or {}
                    detail.update(
                        {
                            "graph_id": d.get("graph_id"),
                            "name": d.get("name"),
                            "description": d.get("description"),
                            "metadata": d.get("metadata") or {},
                        }
                    )
            except Exception:
                pass
        md = (detail.get("metadata") or {}) if isinstance(detail.get("metadata"), dict) else {}
        
        # Check for custom display name override first
        assistant_id = detail.get("assistant_id")
        graph_id = detail.get("graph_id")
        override_name = DISPLAY_NAME_OVERRIDES.get(assistant_id) or DISPLAY_NAME_OVERRIDES.get(graph_id)
        
        display_name = (
            override_name
            or detail.get("name")
            or md.get("display_name")
            or md.get("friendly_name")
            or graph_id
            or assistant_id
        )
        detail["display_name"] = display_name
        enriched.append(detail)

    # Final fallback: read local graphs from agents/langgraph.json
    if not enriched:
        try:
            config_path = Path(__file__).parent / "agents" / "langgraph.json"
            with open(config_path, encoding="utf-8") as f:
                cfg = json.load(f) or {}
            graphs = (cfg.get("graphs") or {}) if isinstance(cfg, dict) else {}
            for graph_id in graphs.keys():
                enriched.append({
                    "assistant_id": graph_id,
                    "graph_id": graph_id,
                    "display_name": DISPLAY_NAME_OVERRIDES.get(graph_id) or graph_id,
                })
        except Exception as exc:  # noqa: BLE001
            logger.error(f"Failed to read local agents/langgraph.json: {exc}")

    # Filter out healthcare-agent from the list
    enriched = [agent for agent in enriched if agent.get("assistant_id") != "healthcare-agent" and agent.get("graph_id") != "healthcare-agent"]

    return enriched

async def run_bot(webrtc_connection, ws: WebSocket, assistant_override: str | None = None):
    """Run the voice agent bot with WebRTC connection and WebSocket.

    Args:
        webrtc_connection: The WebRTC connection for audio streaming
        ws: WebSocket connection for communication
    """
    stream_id = uuid.uuid4()
    transport_params = TransportParams(
        audio_in_enabled=True,
        audio_in_sample_rate=16000,
        audio_out_sample_rate=16000,
        audio_out_enabled=True,
        vad_analyzer=SileroVADAnalyzer(),
        audio_out_10ms_chunks=5,
    )

    transport = SmallWebRTCTransport(
        webrtc_connection=webrtc_connection,
        params=transport_params,
    )

    selected_assistant = assistant_override or os.getenv("LANGGRAPH_ASSISTANT", "ace-base-agent")
    logger.info(f"Using LangGraph assistant: {selected_assistant}")

    llm = LangGraphLLMService(
        base_url=os.getenv("LANGGRAPH_BASE_URL", "http://127.0.0.1:2024"),
        assistant=selected_assistant,
        user_email=os.getenv("USER_EMAIL", "test@example.com"),
        stream_mode=os.getenv("LANGGRAPH_STREAM_MODE", "values"),
        debug_stream=os.getenv("LANGGRAPH_DEBUG_STREAM", "false").lower() == "true",
    )



    # stt = RivaASRService(
    #     server=os.getenv("RIVA_ASR_URL", "localhost:50051"),
    #     api_key=os.getenv("NVIDIA_API_KEY"),
    #     language=os.getenv("RIVA_ASR_LANGUAGE", "en-US"),
    #     sample_rate=16000,
    #     model=os.getenv("RIVA_ASR_MODEL", "parakeet-1.1b-en-US-asr-streaming-silero-vad-asr-bls-ensemble"),
    # )

    stt = RivaASRService(
        # server=os.getenv("RIVA_ASR_URL", "localhost:50051"), # default url is grpc.nvcf.nvidia.com:443
        api_key=os.getenv("RIVA_API_KEY"),
        function_id=os.getenv("NVIDIA_ASR_FUNCTION_ID", "52b117d2-6c15-4cfa-a905-a67013bee409"),
        language=os.getenv("RIVA_ASR_LANGUAGE", "en-US"),
        sample_rate=16000,
        model=os.getenv("RIVA_ASR_MODEL", "parakeet-1.1b-en-US-asr-streaming-silero-vad-asr-bls-ensemble"),
    )

    # stt = RivaASRService(
    #     server=os.getenv("RIVA_ASR_URL", "localhost:50051"),
    #     api_key=os.getenv("NVIDIA_API_KEY"),
    #     language=os.getenv("RIVA_ASR_LANGUAGE", "en-US"),
    #     sample_rate=16000,
    #     model=os.getenv("RIVA_ASR_MODEL", "parakeet-1.1b-en-US-asr-streaming-silero-vad-asr-bls-ensemble"),
    # )

    # Load IPA dictionary with error handling
    ipa_file = Path(__file__).parent / "ipa.json"
    try:
        with open(ipa_file, encoding="utf-8") as f:
            ipa_dict = json.load(f)
    except FileNotFoundError as e:
        logger.error(f"IPA dictionary file not found at {ipa_file}")
        raise FileNotFoundError(f"IPA dictionary file not found at {ipa_file}") from e
    except json.JSONDecodeError as e:
        logger.error(f"Invalid JSON in IPA dictionary file: {e}")
        raise ValueError(f"Invalid JSON in IPA dictionary file: {e}") from e
    except Exception as e:
        logger.error(f"Error loading IPA dictionary: {e}")
        raise

    tts = RivaTTSService(
        # server=os.getenv("RIVA_TTS_URL", "localhost:50051"), # default url is grpc.nvcf.nvidia.com:443
        api_key=os.getenv("RIVA_API_KEY"),
        function_id=os.getenv("NVIDIA_TTS_FUNCTION_ID", "4e813649-d5e4-4020-b2be-2b918396d19d"),
        voice_id=os.getenv("RIVA_TTS_VOICE_ID", "Magpie-ZeroShot.Female-1"),
        model=os.getenv("RIVA_TTS_MODEL", "magpie_tts_ensemble-Magpie-ZeroShot"),
        language=os.getenv("RIVA_TTS_LANGUAGE", "en-US"),
        zero_shot_audio_prompt_file=(
            Path(os.getenv("ZERO_SHOT_AUDIO_PROMPT")) if os.getenv("ZERO_SHOT_AUDIO_PROMPT") else None
        ),
    )

    # tts = RivaTTSService(
    #     server=os.getenv("RIVA_TTS_URL", "localhost:50051"),
    #     api_key=os.getenv("NVIDIA_API_KEY"),
    #     voice_id=os.getenv("RIVA_TTS_VOICE_ID", "Magpie-ZeroShot.Female-1"),
    #     model=os.getenv("RIVA_TTS_MODEL", "magpie_tts_ensemble-Magpie-ZeroShot"),
    #     language=os.getenv("RIVA_TTS_LANGUAGE", "en-US"),
    #     zero_shot_audio_prompt_file=(
    #         Path(os.getenv("ZERO_SHOT_AUDIO_PROMPT", str(Path(__file__).parent / "model-em_sample-02.wav")))
    #         if os.getenv("ZERO_SHOT_AUDIO_PROMPT")
    #         else None
    #     ),
    #     ipa_dict=ipa_dict,
    # )

    # Create audio_dumps directory if it doesn't exist
    audio_dumps_dir = Path(__file__).parent / "audio_dumps"
    audio_dumps_dir.mkdir(exist_ok=True)

    asr_recorder = AudioRecorder(
        output_file=str(audio_dumps_dir / f"asr_recording_{stream_id}.wav"),
        params=transport_params,
        frame_type=InputAudioRawFrame,
    )

    tts_recorder = AudioRecorder(
        output_file=str(audio_dumps_dir / f"tts_recording_{stream_id}.wav"),
        params=transport_params,
        frame_type=TTSAudioRawFrame,
    )

    # Used to synchronize the user and bot transcripts in the UI
    stt_transcript_synchronization = UserTranscriptSynchronization()
    tts_transcript_synchronization = BotTranscriptSynchronization()

    # Start with empty context; LangGraph agent manages prompts and policy
    context = OpenAILLMContext([])

    # Store context globally so WebSocket can access it
    pc_id = webrtc_connection.pc_id
    contexts_map[pc_id] = context

    # Configure speculative speech processing based on environment variable
    enable_speculative_speech = os.getenv("ENABLE_SPECULATIVE_SPEECH", "true").lower() == "true"

    if enable_speculative_speech:
        context_aggregator = create_nvidia_context_aggregator(context, send_interims=True)
        tts_response_cacher = NvidiaTTSResponseCacher()
    else:
        context_aggregator = llm.create_context_aggregator(context)
        tts_response_cacher = None

    transcript_processor_output = WebsocketTranscriptOutput(ws)

    pipeline = Pipeline(
        [
            transport.input(),  # Websocket input from client
            asr_recorder,
            stt,  # Speech-To-Text
            stt_transcript_synchronization,
            context_aggregator.user(),
            llm,  # LLM
            tts,  # Text-To-Speech
            tts_recorder,
            *([tts_response_cacher] if tts_response_cacher else []),  # Include cacher only if enabled
            tts_transcript_synchronization,
            transcript_processor_output,
            transport.output(),  # Websocket output to client
            context_aggregator.assistant(),
        ]
    )

    task = PipelineTask(
        pipeline,
        params=PipelineParams(
            allow_interruptions=True,
            enable_metrics=True,
            enable_usage_metrics=True,
            send_initial_empty_metrics=True,
            start_metadata={"stream_id": stream_id},
        ),
    )

    # No auto-kickoff; LangGraph determines when/how to greet

    runner = PipelineRunner(handle_sigint=False)

    await runner.run(task)


@app.websocket("/ws")
async def websocket_endpoint(websocket: WebSocket):
    """WebSocket endpoint for handling voice agent connections.

    Args:
        websocket: The WebSocket connection to handle
    """
    await websocket.accept()
    try:
        request = await websocket.receive_json()
        pc_id = request.get("pc_id")
        assistant_from_client = request.get("assistant")

        if pc_id and pc_id in pcs_map:
            pipecat_connection = pcs_map[pc_id]
            logger.info(f"Reusing existing connection for pc_id: {pc_id}")
            await pipecat_connection.renegotiate(sdp=request["sdp"], type=request["type"])
        else:
            # Build dynamic servers (Twilio or env) for new connections
            dynamic_servers = _build_server_ice_servers()
            pipecat_connection = SmallWebRTCConnection(dynamic_servers if dynamic_servers else ice_servers)
            await pipecat_connection.initialize(sdp=request["sdp"], type=request["type"])

            @pipecat_connection.event_handler("closed")
            async def handle_disconnected(webrtc_connection: SmallWebRTCConnection):
                logger.info(f"Discarding peer connection for pc_id: {webrtc_connection.pc_id}")
                pcs_map.pop(webrtc_connection.pc_id, None)  # Remove connection reference
                contexts_map.pop(webrtc_connection.pc_id, None)  # Remove context reference

            asyncio.create_task(run_bot(pipecat_connection, websocket, assistant_from_client))

        answer = pipecat_connection.get_answer()
        pcs_map[answer["pc_id"]] = pipecat_connection

        await websocket.send_json(answer)

        # Keep the connection open and print text messages
        while True:
            try:
                message = await websocket.receive_text()
                # Parse JSON message from UI
                try:
                    data = json.loads(message)
                    message = data.get("message", "").strip()
                    if data.get("type") == "context_reset" and message:
                        print(f"Received context reset from UI: {message}")
                        logger.info(f"Context reset from UI: {message}")

                        # Forward context reset as a user message to LangGraph on next turn
                        pc_id = pipecat_connection.pc_id
                        if pc_id in contexts_map:
                            context = contexts_map[pc_id]
                            context.add_message({"role": "user", "content": message})
                        else:
                            print(f"No context found for pc_id: {pc_id}")

                except json.JSONDecodeError:
                    print(f"Non-JSON message: {message}")
            except Exception as e:
                logger.error(f"Error processing message: {e}")
                break

    except WebSocketDisconnect:
        logger.info("Client disconnected from websocket")


@app.get("/get_prompt")
async def get_prompt():
    """Report that the LangGraph agent owns the prompt/policy."""
    return {
        "prompt": "",
        "name": "LangGraph-managed",
        "description": "Prompt and persona are managed by the LangGraph agent.",
    }

# RTC config endpoint must be registered before mounting static at "/"
@app.get("/rtc-config")
async def rtc_config():
    """Expose browser RTC ICE configuration based on environment variables or Twilio.

    Uses Twilio dynamic TURN credentials when TWILIO_ACCOUNT_SID/TWILIO_AUTH_TOKEN are set.
    Falls back to TURN_* env vars. Always includes a public STUN fallback.
    """
    try:
        servers = _build_client_ice_servers()
        return {"iceServers": servers}
    except Exception as e:  # noqa: BLE001
        logger.warning(f"rtc-config dynamic build failed: {e}")
        # Final safe fallback
        return {"iceServers": [{"urls": "stun:stun.l.google.com:19302"}]}


# Serve static UI (if bundled) after API/WebSocket routes so they still take precedence
UI_DIST_DIR = Path(__file__).parent / "ui" / "dist"
if UI_DIST_DIR.exists():
    app.mount("/", StaticFiles(directory=str(UI_DIST_DIR), html=True), name="static")


if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="WebRTC demo")
    parser.add_argument("--host", default="0.0.0.0", help="Host for HTTP server (default: localhost)")
    parser.add_argument("--port", type=int, default=7860, help="Port for HTTP server (default: 7860)")
    parser.add_argument("--verbose", "-v", action="count")
    args = parser.parse_args()

    logger.remove(0)
    if args.verbose:
        logger.add(sys.stderr, level="TRACE")
    else:
        logger.add(sys.stderr, level="DEBUG")

    uvicorn.run(app, host=args.host, port=args.port)