File size: 12,331 Bytes
174ae06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
# Copyright (c) 2025 NVIDIA CORPORATION.
# Licensed under the MIT license.

# Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license.
# LICENSE is in incl_licenses directory.

# Copyright 2024 NVIDIA CORPORATION & AFFILIATES
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# SPDX-License-Identifier: Apache-2.0

import copy
import json
import os
import pathlib
import re
import warnings
from dataclasses import dataclass

import torch
import torch.distributed as dist
from accelerate.hooks import add_hook_to_module
from transformers import PretrainedConfig, PreTrainedModel
from transformers.integrations.deepspeed import is_deepspeed_zero3_enabled

from llava.train.sequence_parallel.globals import get_pg_manager, get_ulysses_sp_pg


def rprint(*args, **kwargs):
    rank = int(os.environ.get("RANK", 0))
    world_size = int(os.environ.get("WORLD_SIZE", 1))
    if world_size > 1 and dist.is_initialized():
        return print(f"[dist-{rank}-of-{world_size}]", *args, **kwargs)
    else:
        return print(*args, **kwargs)


def mprint(*args, **kwargs):
    rank = int(os.environ.get("RANK", 0))
    world_size = int(os.environ.get("WORLD_SIZE", 1))
    if world_size > 1 and dist.is_initialized():
        if rank == 0:
            return print(f"[dist-{rank}-of-{world_size}]", *args, **kwargs)
        else:
            return
    else:
        return print(*args, **kwargs)


def is_local(model_name_or_path: str) -> bool:
    return os.path.isdir(model_name_or_path)


def get_checkpoint_path(output_dir: str, checkpoint_prefix: str = "checkpoint") -> str | None:
    output_dir = os.path.abspath(output_dir)
    pathlib_dir = pathlib.Path(output_dir)

    if list(pathlib_dir.glob("config.json")):
        # training has been finished
        return output_dir, False
    else:
        try:
            ordering_and_checkpoint_path = []
            glob_checkpoints = [
                str(x) for x in pathlib.Path(output_dir).glob(f"{checkpoint_prefix}-*") if os.path.isdir(x)
            ]
            for path in glob_checkpoints:
                regex_match = re.match(f".*{checkpoint_prefix}-([0-9]+)", path)
                if regex_match is not None and regex_match.groups() is not None:
                    ordering_and_checkpoint_path.append((int(regex_match.groups()[0]), path))
            checkpoints_sorted = sorted(ordering_and_checkpoint_path)
            return checkpoints_sorted[-1][1], True
        except:
            return None, True


def prepare_config_for_training(
    config: PretrainedConfig, model_args: dataclass, training_args: dataclass, data_args: dataclass
) -> None:
    config.chat_template = model_args.chat_template
    assert model_args.vision_tower is not None, "requires vision tower"
    assert model_args.speech_tower is not None, "requires speech tower"
    assert model_args.sound_tower is not None, "requires sound tower"
    # set module configurations
    if getattr(config, "llm_cfg", None) is None:
        config.llm_cfg = model_args.model_name_or_path
    if getattr(config, "vision_tower_cfg", None) is None:
        config.vision_tower_cfg = model_args.vision_tower
    if getattr(config, "speech_tower_cfg", None) is None:
        config.speech_tower_cfg = model_args.speech_tower
    if getattr(config, "sound_tower_cfg", None) is None:
        config.sound_tower_cfg = model_args.sound_tower
    if getattr(config, "mm_projector_cfg", None) is None:
        config.mm_projector_cfg = model_args.mm_projector
    if getattr(config, "speech_mm_projector_cfg", None) is None:
        config.speech_mm_projector_cfg = model_args.speech_mm_projector
    if getattr(config, "sound_mm_projector_cfg", None) is None:
        config.sound_mm_projector_cfg = model_args.sound_mm_projector
    # set default dtype
    config.model_dtype = torch.bfloat16 if training_args.bf16 else torch.float16
    config.model_dtype = config.model_dtype.__str__()
    # set tuning modules
    config.tune_language_model = training_args.tune_language_model
    config.tune_vision_tower = training_args.tune_vision_tower
    config.tune_speech_tower = training_args.tune_speech_tower
    config.tune_sound_tower = training_args.tune_sound_tower
    config.tune_mm_projector = training_args.tune_mm_projector
    config.tune_speech_mm_projector = training_args.tune_speech_mm_projector
    config.tune_sound_mm_projector = training_args.tune_sound_mm_projector
    # set data args
    # Get the image_aspect_ratio from the config if is defined there
    # (case of resuming from a checkpoint) or from the data_args
    # (i.e. from the command line when starting a new training).
    if getattr(data_args, "image_aspect_ratio", None) is not None:
        if getattr(config, "image_aspect_ratio", None) is None:
            config.image_aspect_ratio = data_args.image_aspect_ratio
    elif getattr(config, "image_aspect_ratio", None) is not None:
        data_args.image_aspect_ratio = config.image_aspect_ratio
    else:
        raise ValueError("image_aspect_ratio must be set either in data_args or in the pretrained config")

    if (
        hasattr(training_args, "deepspeed")
        and training_args.deepspeed is not None
        and "mics" in training_args.deepspeed
    ):
        config.deepspeed = training_args.deepspeed

    for key, value in model_args.__dict__.items():
        try:
            value = json.loads(value)
        except:
            pass
        setattr(config, key, value)


def vision_resolution_elevation(model: PreTrainedModel, config: PretrainedConfig):
    vision_tower = model.get_vision_tower()
    if vision_tower is not None and "radio" not in vision_tower.__class__.__name__.lower():
        vision_tower._maybe_resize_pos_embeds(
            model=vision_tower.vision_tower,
            image_processor=vision_tower.image_processor,
            resolution=getattr(config, "vision_resolution", -1),
            interpolate_mode=getattr(config, "interpolate_mode", "linear"),
        )


def unit_test_rope_scaling(model: PreTrainedModel, config: PretrainedConfig, training_args: dataclass):
    return False


def calculate_loss_weight(labels, ignore_index=-100):
    # (Qinghao): Weighted loss based on num_active_elements
    # To achieve accurate sequence parallel loss calculation, we need to get
    # the real active_elements of each sequence partitions.
    # For data parallelism, the loss almost remains the same (also more accurate).
    shift_labels = labels[..., 1:].contiguous()
    shift_labels = shift_labels.view(-1)

    padding_mask = shift_labels.eq(ignore_index)  # IGNORE_INDEX = -100 by default
    num_active_elements = padding_mask.numel() - padding_mask.long().sum()

    # global_active_sum = copy.deepcopy(num_active_elements)
    global_active_sum = num_active_elements.detach().clone()

    dist.all_reduce(global_active_sum)
    loss_weight = num_active_elements / global_active_sum * dist.get_world_size()
    return loss_weight


def reshard_hiddne_states_and_labels(hidden_states, labels):
    PROCESS_GROUP_MANAGER = get_pg_manager()
    sp_degree = PROCESS_GROUP_MANAGER.sp_degree
    sp_rank = PROCESS_GROUP_MANAGER.sp_rank
    sp_group = PROCESS_GROUP_MANAGER.ulysses_pg
    from llava.constants import IGNORE_INDEX

    # Get the seq len on different sp ranks
    bs, shard_seqlen = labels.shape
    ulysses_seq_len = [torch.zeros(1, dtype=torch.int64, device=labels.device) for _ in range(sp_degree)]
    dist.barrier(group=sp_group)
    dist.all_gather(ulysses_seq_len, torch.tensor(shard_seqlen, device=labels.device), group=sp_group)
    dist.barrier(group=sp_group)
    global_seq_len = torch.cat(ulysses_seq_len, dim=0)
    # Gather all labels and flaten them
    all_labels = [
        torch.zeros(bs, seq_len, dtype=labels.dtype, device=labels.device).contiguous() for seq_len in ulysses_seq_len
    ]
    dist.all_gather(all_labels, labels.contiguous(), group=sp_group)
    # flatten_global_labels = torch.cat(all_labels, dim=1)[:, 1:].view(-1)
    flatten_global_labels = torch.cat(all_labels, dim=1)[:, 1:].contiguous().view(-1)
    # Get the label!=IGNORE_INDEX's index
    flatten_label_mask = flatten_global_labels.ne(IGNORE_INDEX)
    flatten_effective_label_index = flatten_label_mask.nonzero(as_tuple=True)
    # padding the effective_label_index if the length is smaller than sp_degree
    if flatten_effective_label_index[0].shape[0] < sp_degree:
        warnings.warn(
            f"The effective label length {flatten_effective_label_index[0].shape[0]} is smaller than sp_degree {sp_degree}, padding the index"
        )
        repeat_num = sp_degree // flatten_effective_label_index[0].shape[0] + 1
    else:
        repeat_num = 1
    # Reconstruct the labels by selecting from the global labels
    effective_global_labels = flatten_global_labels[flatten_effective_label_index]
    if repeat_num > 1:
        effective_global_labels = effective_global_labels.repeat(repeat_num)
    # Global effective seqence length
    global_effective_seq_len = effective_global_labels.shape[0]
    reshard_size = global_effective_seq_len // sp_degree
    # Hyper parameters to reshard the hidden states and labels
    if sp_rank == 0:
        original_start_id = 0
        original_end_id = torch.sum(global_seq_len[: sp_rank + 1]).item()
        start_id = 0
        end_id = reshard_size * (sp_rank + 1)
    elif sp_rank == sp_degree - 1:
        original_start_id = torch.sum(global_seq_len[:sp_rank]).item()
        original_end_id = torch.sum(global_seq_len[: sp_rank + 1]).item()
        start_id = reshard_size * sp_rank
        end_id = global_effective_seq_len
    else:
        original_start_id = torch.sum(global_seq_len[:sp_rank]).item()
        original_end_id = torch.sum(global_seq_len[: sp_rank + 1]).item()
        start_id = reshard_size * sp_rank
        end_id = reshard_size * (sp_rank + 1)
    # Get the local labels
    effective_local_labels = torch.narrow(effective_global_labels, 0, start_id, end_id - start_id)
    # Gather all hidden states and flaten them
    # all_hidden_states = [torch.zeros(bs, seq_len, hidden_states.shape[-1], dtype=hidden_states.dtype, device=hidden_states.device, requires_grad=True).contiguous() for seq_len in ulysses_seq_len]
    all_hidden_states = torch.zeros(
        bs, torch.sum(global_seq_len), hidden_states.shape[-1], dtype=hidden_states.dtype, device=hidden_states.device
    ).contiguous()
    all_hidden_states[:, original_start_id:original_end_id, :] += hidden_states
    dist.barrier(group=sp_group)
    dist.all_reduce(all_hidden_states, group=sp_group)
    dist.barrier(group=sp_group)
    flatten_global_hidden_states = all_hidden_states[:, :-1, :].contiguous().view(-1, hidden_states.shape[-1])
    # Get the local hidden states
    effective_flatten_global_hidden_states = flatten_global_hidden_states[flatten_effective_label_index]
    if repeat_num > 1:
        effective_flatten_global_hidden_states = effective_flatten_global_hidden_states.repeat(repeat_num, 1)
    effective_local_hidden_states = torch.narrow(effective_flatten_global_hidden_states, 0, start_id, end_id - start_id)

    return effective_local_hidden_states, effective_local_labels


def sp_loss_rescale(shift_labels, loss):
    from llava.constants import IGNORE_INDEX

    PROCESS_GROUP_MANAGER = get_pg_manager()
    labels_mask = shift_labels.ne(IGNORE_INDEX)  # IGNORE_INDEX = -100 by default
    num_active_elements = torch.sum(labels_mask)
    global_active_sum = copy.deepcopy(num_active_elements)
    # dist.barrier(group=get_ulysses_sp_pg())
    dist.all_reduce(global_active_sum, group=get_ulysses_sp_pg())
    # print(loss.shape, num_active_elements.shape, global_active_sum.shape)
    loss = loss * num_active_elements / global_active_sum
    dist.all_reduce(loss, group=get_ulysses_sp_pg())
    return loss