Spaces:
Running
on
A100
Running
on
A100
File size: 9,126 Bytes
174ae06 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 |
# Copyright (c) 2025 NVIDIA CORPORATION.
# Licensed under the MIT license.
# Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license.
# LICENSE is in incl_licenses directory.
# Copyright 2024 NVIDIA CORPORATION & AFFILIATES
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# SPDX-License-Identifier: Apache-2.0
import re
import torch
from .FloatPointQuantizeTorch import *
from .FloatPointQuantizeTriton import *
def block_cut(input, row_block, column_block, pad_block=False):
# print(input.shape)
original_shape = input.shape
# input tensor shape is M * N
if len(input.shape) > 2:
input = input.reshape(-1, input.shape[2])
elif len(input.shape) == 2:
pass
else:
raise ValueError(f"input shape {input.shape} does not match for block cut, {input}")
M, N = input.shape[0], input.shape[1]
if row_block == -1:
row_block = M
if column_block == -1:
column_block = N
if pad_block:
row_remainder, col_remainder = M % row_block, N % column_block
if row_remainder:
row_pad = row_block - row_remainder
else:
row_pad = 0
if col_remainder:
col_pad = column_block - col_remainder
else:
col_pad = 0
input = torch.nn.functional.pad(
input, (0, col_pad, 0, row_pad), "constant", 0
) # refer to torch's doc to see why
M, N = input.shape[0], input.shape[1]
row_num, column_num = M // row_block, N // column_block
else:
row_num, column_num = M // row_block, N // column_block
assert row_num * row_block == M, f"{row_num}, {row_block}, {M}, {original_shape}"
assert column_num * column_block == N, f"{column_num}, {column_block}, {N}, {original_shape}"
# print(input.shape)
input = (
input.reshape(row_num, row_block, column_num, column_block)
.permute(0, 2, 1, 3)
.reshape(row_num * column_num, row_block, column_block)
)
# print(input.shape)
return input
def block_reshape(input, origin_input, row_block, column_block, pad_block=False):
if len(origin_input.shape) > 2:
flatten_input = origin_input.reshape(-1, origin_input.shape[2])
elif len(origin_input.shape) == 2:
flatten_input = origin_input
else:
raise ValueError(f"input shape {input.shape} does not match for block cut")
M, N = flatten_input.shape[0], flatten_input.shape[1]
if row_block == -1:
row_block = M
if column_block == -1:
column_block = N
if pad_block:
row_remainder, col_remainder = M % row_block, N % column_block
if row_remainder:
row_pad = row_block - row_remainder
else:
row_pad = 0
if col_remainder:
col_pad = column_block - col_remainder
else:
col_pad = 0
pad_origin_input = torch.nn.functional.pad(origin_input, (0, col_pad, 0, row_pad), "constant", 0)
M, N = pad_origin_input.shape[0], pad_origin_input.shape[1]
row_num, column_num = M // row_block, N // column_block
else:
row_num, column_num = M // row_block, N // column_block
input = (
input.reshape(row_num, column_num, row_block, column_block)
.permute(0, 2, 1, 3)
.reshape(row_num * row_block, column_num * column_block)
)
M, N = flatten_input.shape[0], flatten_input.shape[1]
input = input[:M, :N]
if len(origin_input.shape) > 2:
input = input.reshape(origin_input.shape)
elif len(origin_input.shape) == 2:
pass
else:
raise ValueError(f"input shape {input.shape} does not match for block reshape")
return input
def block_verify_int8(input, row_block, column_block, layer_type, necessary=True):
Binput = block_cut(input, row_block, column_block)
Binput = Binput.to(torch.float32)
for n in range(Binput.shape[0]):
unique_values = len(torch.unique(Binput[n, :, :]))
if unique_values > 256:
if necessary:
raise ValueError(f"{layer_type} contains more than 256 unique values.")
else:
return False
return True
def block_quant(input, symm, bits, stochastic, epsilon, apply_quantize, layer_name):
Quant_fn = SymmQuantizer
return Quant_fn.apply(input, symm, bits, stochastic, epsilon, apply_quantize, layer_name)
def extract_bit(string):
match = re.match(r"INT(\d+)", string) # INT8
if match:
return "integer", int(match.group(1)), None
match = re.match(r"E(\d+)M(\d+)", string) # E4M3 / E5M2
if match:
Ebit, Mbit = int(match.group(1)), int(match.group(2))
if Ebit == 1:
return "integer", Mbit + 1, None
if Mbit == 0:
return "floatExM0", int(match.group(1)), 0
return "floatExMy", int(match.group(1)), int(match.group(2))
match = re.match(r"DE(\d+)", string)
if match:
return "Dynamic", int(match.group(1)), None
match = re.match(r"ZeroD(\d+)", string)
if match:
return "ZeroDynamic", int(match.group(1)), None
raise ValueError(f"{string} data format is not supported")
class SymmQuantizer(torch.autograd.function.InplaceFunction):
@staticmethod
def forward(ctx, input, symm, bits, stochastic, epsilon, apply_quantize=True, layer_name=None):
with torch.no_grad():
absmax_per_block = input.abs().amax(dim=(1, 2)).unsqueeze(1).unsqueeze(2) + epsilon
if bits == "100" or not apply_quantize:
return input, input, torch.ones_like(absmax_per_block)
elif bits == "FP32":
return input.to(torch.float32), input.to(torch.float32), torch.ones_like(absmax_per_block)
elif bits == "FP16":
return input.to(torch.float16), input.to(torch.float16), torch.ones_like(absmax_per_block)
elif bits == "BF16":
return input.to(torch.bfloat16), input.to(torch.bfloat16), torch.ones_like(absmax_per_block)
else:
QuantType, bit1, bit2 = extract_bit(bits)
if not symm:
bit1 = bit1 + 1 # pretend to be asymmtric
if QuantType == "integer":
Qn, Qp = -(2 ** (bit1 - 1) - 1), 2 ** (bit1 - 1) - 1
elif QuantType == "floatExMy":
Qn, Qp = -(2 - 2 ** (-bit2)) * (2 ** (2 ** (bit1 - 1))), (2 - 2 ** (-bit2)) * (
2 ** (2 ** (bit1 - 1))
)
if bit1 == 4 and bit2 == 3: # E4M3
Qn, Qp = -448, 448
if bit1 == 5 and bit2 == 2: # E5M2
Qn, Qp = -57344, 57344
elif QuantType == "floatExM0":
Qn, Qp = -(2 ** (2 ** (bit1 - 1))) + 1, 2 ** (2 ** (bit1 - 1))
elif QuantType == "Dynamic":
Qn, Qp = -1, 1
elif QuantType == "ZeroDynamic":
Qn, Qp = -1, 1
else:
raise NotImplementedError(f"{bits} is not supported by quantization")
scale_per_block = (2 * absmax_per_block) / (Qp - Qn)
scale_per_block = scale_per_block.to(input)
Qinput = input / scale_per_block
if QuantType == "integer":
if stochastic:
noise = Qinput.new(Qinput.shape).uniform_(-0.5, 0.5)
Qinput.add_(noise)
Qinput.clamp_(Qn, Qp).round_()
elif QuantType == "floatExMy":
# Qinput = floatExMy_quantize_torch(Qinput, bit1, bit2, stochastic)
Qinput = floatExMy_quantize_triton(Qinput, bit1, bit2, stochastic)
elif QuantType == "floatExM0":
Qinput = floatExM0_quantize_torch(Qinput, bit1, stochastic)
else:
raise NotImplementedError(f"{bits} is not supported by quantization")
RQinput = Qinput * scale_per_block
if input.dtype != Qinput.dtype:
print(
f"Input type is {input.dtype}, Qinput type is {Qinput.dtype}, scale_per_block type is {scale_per_block.dtype}",
file=open("debug.txt", "a"),
)
import IPython
IPython.embed()
return RQinput, Qinput, scale_per_block
@staticmethod
def backward(ctx, grad_output):
return grad_output, None, None, None, None, None
|