File size: 36,346 Bytes
6d8c66f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 |
# Copyright (c) 2024 NVIDIA CORPORATION.
# Licensed under the MIT license.
# Adapted from https://github.com/jik876/hifi-gan under the MIT license.
# LICENSE is in incl_licenses directory.
import torch
import torch.nn.functional as F
import torch.nn as nn
from torch.nn import Conv1d, ConvTranspose1d, Conv2d
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
from torchaudio.transforms import Spectrogram, Resample
from librosa.filters import mel as librosa_mel_fn
from scipy import signal
import activations
from utils import init_weights, get_padding
from alias_free_torch.act import Activation1d as TorchActivation1d
import typing
from typing import List, Optional, Tuple
from collections import namedtuple
import math
import functools
class AMPBlock1(torch.nn.Module):
def __init__(self, h, channels, kernel_size=3, dilation=(1, 3, 5), activation=None):
super(AMPBlock1, self).__init__()
self.h = h
self.convs1 = nn.ModuleList([
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
padding=get_padding(kernel_size, dilation[0]))),
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
padding=get_padding(kernel_size, dilation[1]))),
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2],
padding=get_padding(kernel_size, dilation[2])))
])
self.convs1.apply(init_weights)
self.convs2 = nn.ModuleList([
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
padding=get_padding(kernel_size, 1))),
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
padding=get_padding(kernel_size, 1))),
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
padding=get_padding(kernel_size, 1)))
])
self.convs2.apply(init_weights)
self.num_layers = len(self.convs1) + len(self.convs2) # total number of conv layers
# select which Activation1d, lazy-load cuda version to ensure backward compatibility
if self.h.get("use_cuda_kernel", False):
# faster CUDA kernel implementation of Activation1d
from alias_free_cuda.activation1d import Activation1d as CudaActivation1d
Activation1d = CudaActivation1d
else:
Activation1d = TorchActivation1d
if activation == 'snake': # periodic nonlinearity with snake function and anti-aliasing
self.activations = nn.ModuleList([
Activation1d(
activation=activations.Snake(channels, alpha_logscale=h.snake_logscale))
for _ in range(self.num_layers)
])
elif activation == 'snakebeta': # periodic nonlinearity with snakebeta function and anti-aliasing
self.activations = nn.ModuleList([
Activation1d(
activation=activations.SnakeBeta(channels, alpha_logscale=h.snake_logscale))
for _ in range(self.num_layers)
])
else:
raise NotImplementedError("activation incorrectly specified. check the config file and look for 'activation'.")
def forward(self, x):
acts1, acts2 = self.activations[::2], self.activations[1::2]
for c1, c2, a1, a2 in zip(self.convs1, self.convs2, acts1, acts2):
xt = a1(x)
xt = c1(xt)
xt = a2(xt)
xt = c2(xt)
x = xt + x
return x
def remove_weight_norm(self):
for l in self.convs1:
remove_weight_norm(l)
for l in self.convs2:
remove_weight_norm(l)
class AMPBlock2(torch.nn.Module):
def __init__(self, h, channels, kernel_size=3, dilation=(1, 3), activation=None):
super(AMPBlock2, self).__init__()
self.h = h
self.convs = nn.ModuleList([
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
padding=get_padding(kernel_size, dilation[0]))),
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
padding=get_padding(kernel_size, dilation[1])))
])
self.convs.apply(init_weights)
self.num_layers = len(self.convs) # total number of conv layers
# select which Activation1d, lazy-load cuda version to ensure backward compatibility
if self.h.get("use_cuda_kernel", False):
# faster CUDA kernel implementation of Activation1d
from alias_free_cuda.activation1d import Activation1d as CudaActivation1d
Activation1d = CudaActivation1d
else:
Activation1d = TorchActivation1d
if activation == 'snake': # periodic nonlinearity with snake function and anti-aliasing
self.activations = nn.ModuleList([
Activation1d(
activation=activations.Snake(channels, alpha_logscale=h.snake_logscale))
for _ in range(self.num_layers)
])
elif activation == 'snakebeta': # periodic nonlinearity with snakebeta function and anti-aliasing
self.activations = nn.ModuleList([
Activation1d(
activation=activations.SnakeBeta(channels, alpha_logscale=h.snake_logscale))
for _ in range(self.num_layers)
])
else:
raise NotImplementedError("activation incorrectly specified. check the config file and look for 'activation'.")
def forward(self, x):
for c, a in zip (self.convs, self.activations):
xt = a(x)
xt = c(xt)
x = xt + x
return x
def remove_weight_norm(self):
for l in self.convs:
remove_weight_norm(l)
class BigVGAN(torch.nn.Module):
# this is our main BigVGAN model. Applies anti-aliased periodic activation for resblocks.
# New in v2: if use_cuda_kernel is set to True, it loads optimized CUDA kernels for AMP.
# NOTE: use_cuda_kernel=True should be used for inference only (training is not supported).
def __init__(
self,
h,
use_cuda_kernel: bool=False
):
super(BigVGAN, self).__init__()
self.h = h
self.h["use_cuda_kernel"] = use_cuda_kernel # add it to global hyperparameters (h)
self.num_kernels = len(h.resblock_kernel_sizes)
self.num_upsamples = len(h.upsample_rates)
# pre conv
self.conv_pre = weight_norm(Conv1d(h.num_mels, h.upsample_initial_channel, 7, 1, padding=3))
# define which AMPBlock to use. BigVGAN uses AMPBlock1 as default
resblock = AMPBlock1 if h.resblock == '1' else AMPBlock2
# transposed conv-based upsamplers. does not apply anti-aliasing
self.ups = nn.ModuleList()
for i, (u, k) in enumerate(zip(h.upsample_rates, h.upsample_kernel_sizes)):
self.ups.append(nn.ModuleList([
weight_norm(ConvTranspose1d(h.upsample_initial_channel // (2 ** i),
h.upsample_initial_channel // (2 ** (i + 1)),
k, u, padding=(k - u) // 2))
]))
# residual blocks using anti-aliased multi-periodicity composition modules (AMP)
self.resblocks = nn.ModuleList()
for i in range(len(self.ups)):
ch = h.upsample_initial_channel // (2 ** (i + 1))
for j, (k, d) in enumerate(zip(h.resblock_kernel_sizes, h.resblock_dilation_sizes)):
self.resblocks.append(resblock(h, ch, k, d, activation=h.activation))
# select which Activation1d, lazy-load cuda version to ensure backward compatibility
if self.h.get("use_cuda_kernel", False):
# faster CUDA kernel implementation of Activation1d
from alias_free_cuda.activation1d import Activation1d as CudaActivation1d
Activation1d = CudaActivation1d
else:
Activation1d = TorchActivation1d
# post conv
if h.activation == "snake": # periodic nonlinearity with snake function and anti-aliasing
activation_post = activations.Snake(ch, alpha_logscale=h.snake_logscale)
self.activation_post = Activation1d(activation=activation_post)
elif h.activation == "snakebeta": # periodic nonlinearity with snakebeta function and anti-aliasing
activation_post = activations.SnakeBeta(ch, alpha_logscale=h.snake_logscale)
self.activation_post = Activation1d(activation=activation_post)
else:
raise NotImplementedError("activation incorrectly specified. check the config file and look for 'activation'.")
# whether to use bias for the final conv_post. Defaults to True for backward compatibility
self.use_bias_at_final = h.get("use_bias_at_final", True)
self.conv_post = weight_norm(Conv1d(
ch, 1, 7, 1, padding=3, bias=self.use_bias_at_final
))
# weight initialization
for i in range(len(self.ups)):
self.ups[i].apply(init_weights)
self.conv_post.apply(init_weights)
# final tanh activation. Defaults to True for backward compatibility
self.use_tanh_at_final = h.get("use_tanh_at_final", True)
def forward(self, x):
# pre conv
x = self.conv_pre(x)
for i in range(self.num_upsamples):
# upsampling
for i_up in range(len(self.ups[i])):
x = self.ups[i][i_up](x)
# AMP blocks
xs = None
for j in range(self.num_kernels):
if xs is None:
xs = self.resblocks[i * self.num_kernels + j](x)
else:
xs += self.resblocks[i * self.num_kernels + j](x)
x = xs / self.num_kernels
# post conv
x = self.activation_post(x)
x = self.conv_post(x)
# final tanh activation
if self.use_tanh_at_final:
x = torch.tanh(x)
else:
x = torch.clamp(x, min=-1., max=1.) # bound the output to [-1, 1]
return x
def remove_weight_norm(self):
print('Removing weight norm...')
for l in self.ups:
for l_i in l:
remove_weight_norm(l_i)
for l in self.resblocks:
l.remove_weight_norm()
remove_weight_norm(self.conv_pre)
remove_weight_norm(self.conv_post)
class DiscriminatorP(torch.nn.Module):
def __init__(self, h, period, kernel_size=5, stride=3, use_spectral_norm=False):
super(DiscriminatorP, self).__init__()
self.period = period
self.d_mult = h.discriminator_channel_mult
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
self.convs = nn.ModuleList([
norm_f(Conv2d(1, int(32*self.d_mult), (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
norm_f(Conv2d(int(32*self.d_mult), int(128*self.d_mult), (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
norm_f(Conv2d(int(128*self.d_mult), int(512*self.d_mult), (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
norm_f(Conv2d(int(512*self.d_mult), int(1024*self.d_mult), (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
norm_f(Conv2d(int(1024*self.d_mult), int(1024*self.d_mult), (kernel_size, 1), 1, padding=(2, 0))),
])
self.conv_post = norm_f(Conv2d(int(1024*self.d_mult), 1, (3, 1), 1, padding=(1, 0)))
def forward(self, x):
fmap = []
# 1d to 2d
b, c, t = x.shape
if t % self.period != 0: # pad first
n_pad = self.period - (t % self.period)
x = F.pad(x, (0, n_pad), "reflect")
t = t + n_pad
x = x.view(b, c, t // self.period, self.period)
for l in self.convs:
x = l(x)
x = F.leaky_relu(x, 0.1)
fmap.append(x)
x = self.conv_post(x)
fmap.append(x)
x = torch.flatten(x, 1, -1)
return x, fmap
class MultiPeriodDiscriminator(torch.nn.Module):
def __init__(self, h):
super(MultiPeriodDiscriminator, self).__init__()
self.mpd_reshapes = h.mpd_reshapes
print("mpd_reshapes: {}".format(self.mpd_reshapes))
discriminators = [DiscriminatorP(h, rs, use_spectral_norm=h.use_spectral_norm) for rs in self.mpd_reshapes]
self.discriminators = nn.ModuleList(discriminators)
def forward(self, y, y_hat):
y_d_rs = []
y_d_gs = []
fmap_rs = []
fmap_gs = []
for i, d in enumerate(self.discriminators):
y_d_r, fmap_r = d(y)
y_d_g, fmap_g = d(y_hat)
y_d_rs.append(y_d_r)
fmap_rs.append(fmap_r)
y_d_gs.append(y_d_g)
fmap_gs.append(fmap_g)
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
class DiscriminatorR(nn.Module):
def __init__(self, cfg, resolution):
super().__init__()
self.resolution = resolution
assert len(self.resolution) == 3, \
"MRD layer requires list with len=3, got {}".format(self.resolution)
self.lrelu_slope = 0.1
norm_f = weight_norm if cfg.use_spectral_norm == False else spectral_norm
if hasattr(cfg, "mrd_use_spectral_norm"):
print("INFO: overriding MRD use_spectral_norm as {}".format(cfg.mrd_use_spectral_norm))
norm_f = weight_norm if cfg.mrd_use_spectral_norm == False else spectral_norm
self.d_mult = cfg.discriminator_channel_mult
if hasattr(cfg, "mrd_channel_mult"):
print("INFO: overriding mrd channel multiplier as {}".format(cfg.mrd_channel_mult))
self.d_mult = cfg.mrd_channel_mult
self.convs = nn.ModuleList([
norm_f(nn.Conv2d(1, int(32*self.d_mult), (3, 9), padding=(1, 4))),
norm_f(nn.Conv2d(int(32*self.d_mult), int(32*self.d_mult), (3, 9), stride=(1, 2), padding=(1, 4))),
norm_f(nn.Conv2d(int(32*self.d_mult), int(32*self.d_mult), (3, 9), stride=(1, 2), padding=(1, 4))),
norm_f(nn.Conv2d(int(32*self.d_mult), int(32*self.d_mult), (3, 9), stride=(1, 2), padding=(1, 4))),
norm_f(nn.Conv2d(int(32*self.d_mult), int(32*self.d_mult), (3, 3), padding=(1, 1))),
])
self.conv_post = norm_f(nn.Conv2d(int(32 * self.d_mult), 1, (3, 3), padding=(1, 1)))
def forward(self, x):
fmap = []
x = self.spectrogram(x)
x = x.unsqueeze(1)
for l in self.convs:
x = l(x)
x = F.leaky_relu(x, self.lrelu_slope)
fmap.append(x)
x = self.conv_post(x)
fmap.append(x)
x = torch.flatten(x, 1, -1)
return x, fmap
def spectrogram(self, x):
n_fft, hop_length, win_length = self.resolution
x = F.pad(x, (int((n_fft - hop_length) / 2), int((n_fft - hop_length) / 2)), mode='reflect')
x = x.squeeze(1)
x = torch.stft(x, n_fft=n_fft, hop_length=hop_length, win_length=win_length, center=False, return_complex=True)
x = torch.view_as_real(x) # [B, F, TT, 2]
mag = torch.norm(x, p=2, dim =-1) #[B, F, TT]
return mag
class MultiResolutionDiscriminator(nn.Module):
def __init__(self, cfg, debug=False):
super().__init__()
self.resolutions = cfg.resolutions
assert len(self.resolutions) == 3,\
"MRD requires list of list with len=3, each element having a list with len=3. got {}".\
format(self.resolutions)
self.discriminators = nn.ModuleList(
[DiscriminatorR(cfg, resolution) for resolution in self.resolutions]
)
def forward(self, y, y_hat):
y_d_rs = []
y_d_gs = []
fmap_rs = []
fmap_gs = []
for i, d in enumerate(self.discriminators):
y_d_r, fmap_r = d(x=y)
y_d_g, fmap_g = d(x=y_hat)
y_d_rs.append(y_d_r)
fmap_rs.append(fmap_r)
y_d_gs.append(y_d_g)
fmap_gs.append(fmap_g)
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
# Method based on descript-audio-codec: https://github.com/descriptinc/descript-audio-codec
# Modified code adapted from https://github.com/gemelo-ai/vocos under the MIT license.
# LICENSE is in incl_licenses directory.
class DiscriminatorB(nn.Module):
def __init__(
self,
window_length: int,
channels: int = 32,
hop_factor: float = 0.25,
bands: Tuple[Tuple[float, float], ...] = ((0.0, 0.1), (0.1, 0.25), (0.25, 0.5), (0.5, 0.75), (0.75, 1.0)),
):
super().__init__()
self.window_length = window_length
self.hop_factor = hop_factor
self.spec_fn = Spectrogram(
n_fft=window_length, hop_length=int(window_length * hop_factor), win_length=window_length, power=None
)
n_fft = window_length // 2 + 1
bands = [(int(b[0] * n_fft), int(b[1] * n_fft)) for b in bands]
self.bands = bands
convs = lambda: nn.ModuleList(
[
weight_norm(nn.Conv2d(2, channels, (3, 9), (1, 1), padding=(1, 4))),
weight_norm(nn.Conv2d(channels, channels, (3, 9), (1, 2), padding=(1, 4))),
weight_norm(nn.Conv2d(channels, channels, (3, 9), (1, 2), padding=(1, 4))),
weight_norm(nn.Conv2d(channels, channels, (3, 9), (1, 2), padding=(1, 4))),
weight_norm(nn.Conv2d(channels, channels, (3, 3), (1, 1), padding=(1, 1))),
]
)
self.band_convs = nn.ModuleList([convs() for _ in range(len(self.bands))])
self.conv_post = weight_norm(nn.Conv2d(channels, 1, (3, 3), (1, 1), padding=(1, 1)))
def spectrogram(self, x):
# Remove DC offset
x = x - x.mean(dim=-1, keepdims=True)
# Peak normalize the volume of input audio
x = 0.8 * x / (x.abs().max(dim=-1, keepdim=True)[0] + 1e-9)
x = self.spec_fn(x)
x = torch.view_as_real(x)
x = x.permute(0, 3, 2, 1) # [B, F, T, C] -> [B, C, T, F]
# Split into bands
x_bands = [x[..., b[0] : b[1]] for b in self.bands]
return x_bands
def forward(self, x: torch.Tensor):
x_bands = self.spectrogram(x.squeeze(1))
fmap = []
x = []
for band, stack in zip(x_bands, self.band_convs):
for i, layer in enumerate(stack):
band = layer(band)
band = torch.nn.functional.leaky_relu(band, 0.1)
if i > 0:
fmap.append(band)
x.append(band)
x = torch.cat(x, dim=-1)
x = self.conv_post(x)
fmap.append(x)
return x, fmap
# Method based on descript-audio-codec: https://github.com/descriptinc/descript-audio-codec
# Modified code adapted from https://github.com/gemelo-ai/vocos under the MIT license.
# LICENSE is in incl_licenses directory.
class MultiBandDiscriminator(nn.Module):
def __init__(
self,
h,
):
"""
Multi-band multi-scale STFT discriminator, with the architecture based on https://github.com/descriptinc/descript-audio-codec.
and the modified code adapted from https://github.com/gemelo-ai/vocos.
"""
super().__init__()
# fft_sizes (list[int]): Tuple of window lengths for FFT. Defaults to [2048, 1024, 512] if not set in h.
self.fft_sizes = h.get("mbd_fft_sizes", [2048, 1024, 512])
self.discriminators = nn.ModuleList(
[DiscriminatorB(window_length=w) for w in self.fft_sizes]
)
def forward(
self,
y: torch.Tensor,
y_hat: torch.Tensor
) -> Tuple[List[torch.Tensor], List[torch.Tensor], List[List[torch.Tensor]], List[List[torch.Tensor]]]:
y_d_rs = []
y_d_gs = []
fmap_rs = []
fmap_gs = []
for d in self.discriminators:
y_d_r, fmap_r = d(x=y)
y_d_g, fmap_g = d(x=y_hat)
y_d_rs.append(y_d_r)
fmap_rs.append(fmap_r)
y_d_gs.append(y_d_g)
fmap_gs.append(fmap_g)
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
# Adapted from https://github.com/open-mmlab/Amphion/blob/main/models/vocoders/gan/discriminator/mssbcqtd.py under the MIT license.
# LICENSE is in incl_licenses directory.
class DiscriminatorCQT(nn.Module):
def __init__(self, cfg, hop_length, n_octaves, bins_per_octave):
super().__init__()
self.cfg = cfg
self.filters = cfg["cqtd_filters"]
self.max_filters = cfg["cqtd_max_filters"]
self.filters_scale = cfg["cqtd_filters_scale"]
self.kernel_size = (3, 9)
self.dilations = cfg["cqtd_dilations"]
self.stride = (1, 2)
self.in_channels = cfg["cqtd_in_channels"]
self.out_channels = cfg["cqtd_out_channels"]
self.fs = cfg["sampling_rate"]
self.hop_length = hop_length
self.n_octaves = n_octaves
self.bins_per_octave = bins_per_octave
# lazy-load
from nnAudio import features
self.cqt_transform = features.cqt.CQT2010v2(
sr=self.fs * 2,
hop_length=self.hop_length,
n_bins=self.bins_per_octave * self.n_octaves,
bins_per_octave=self.bins_per_octave,
output_format="Complex",
pad_mode="constant",
)
self.conv_pres = nn.ModuleList()
for i in range(self.n_octaves):
self.conv_pres.append(
nn.Conv2d(
self.in_channels * 2,
self.in_channels * 2,
kernel_size=self.kernel_size,
padding=self.get_2d_padding(self.kernel_size),
)
)
self.convs = nn.ModuleList()
self.convs.append(
nn.Conv2d(
self.in_channels * 2,
self.filters,
kernel_size=self.kernel_size,
padding=self.get_2d_padding(self.kernel_size),
)
)
in_chs = min(self.filters_scale * self.filters, self.max_filters)
for i, dilation in enumerate(self.dilations):
out_chs = min(
(self.filters_scale ** (i + 1)) * self.filters, self.max_filters
)
self.convs.append(
weight_norm(nn.Conv2d(
in_chs,
out_chs,
kernel_size=self.kernel_size,
stride=self.stride,
dilation=(dilation, 1),
padding=self.get_2d_padding(self.kernel_size, (dilation, 1)),
))
)
in_chs = out_chs
out_chs = min(
(self.filters_scale ** (len(self.dilations) + 1)) * self.filters,
self.max_filters,
)
self.convs.append(
weight_norm(nn.Conv2d(
in_chs,
out_chs,
kernel_size=(self.kernel_size[0], self.kernel_size[0]),
padding=self.get_2d_padding((self.kernel_size[0], self.kernel_size[0])),
))
)
self.conv_post = weight_norm(nn.Conv2d(
out_chs,
self.out_channels,
kernel_size=(self.kernel_size[0], self.kernel_size[0]),
padding=self.get_2d_padding((self.kernel_size[0], self.kernel_size[0])),
))
self.activation = torch.nn.LeakyReLU(negative_slope=0.1)
self.resample = Resample(orig_freq=self.fs, new_freq=self.fs * 2)
self.cqtd_normalize_volume = self.cfg.get("cqtd_normalize_volume", False)
if self.cqtd_normalize_volume:
print(f"INFO: cqtd_normalize_volume set to True. Will apply DC offset removal & peak volume normalization in CQTD!")
def get_2d_padding(
self, kernel_size: typing.Tuple[int, int], dilation: typing.Tuple[int, int] = (1, 1)
):
return (
((kernel_size[0] - 1) * dilation[0]) // 2,
((kernel_size[1] - 1) * dilation[1]) // 2,
)
def forward(self, x):
fmap = []
if self.cqtd_normalize_volume:
# Remove DC offset
x = x - x.mean(dim=-1, keepdims=True)
# Peak normalize the volume of input audio
x = 0.8 * x / (x.abs().max(dim=-1, keepdim=True)[0] + 1e-9)
x = self.resample(x)
z = self.cqt_transform(x)
z_amplitude = z[:, :, :, 0].unsqueeze(1)
z_phase = z[:, :, :, 1].unsqueeze(1)
z = torch.cat([z_amplitude, z_phase], dim=1)
z = torch.permute(z, (0, 1, 3, 2)) # [B, C, W, T] -> [B, C, T, W]
latent_z = []
for i in range(self.n_octaves):
latent_z.append(
self.conv_pres[i](
z[
:,
:,
:,
i * self.bins_per_octave : (i + 1) * self.bins_per_octave,
]
)
)
latent_z = torch.cat(latent_z, dim=-1)
for i, l in enumerate(self.convs):
latent_z = l(latent_z)
latent_z = self.activation(latent_z)
fmap.append(latent_z)
latent_z = self.conv_post(latent_z)
return latent_z, fmap
class MultiScaleSubbandCQTDiscriminator(nn.Module):
def __init__(self, cfg):
super().__init__()
self.cfg = cfg
# Using get with defaults
self.cfg["cqtd_filters"] = self.cfg.get("cqtd_filters", 32)
self.cfg["cqtd_max_filters"] = self.cfg.get("cqtd_max_filters", 1024)
self.cfg["cqtd_filters_scale"] = self.cfg.get("cqtd_filters_scale", 1)
self.cfg["cqtd_dilations"] = self.cfg.get("cqtd_dilations", [1, 2, 4])
self.cfg["cqtd_in_channels"] = self.cfg.get("cqtd_in_channels", 1)
self.cfg["cqtd_out_channels"] = self.cfg.get("cqtd_out_channels", 1)
# multi-scale params to loop over
self.cfg["cqtd_hop_lengths"] = self.cfg.get("cqtd_hop_lengths", [512, 256, 256])
self.cfg["cqtd_n_octaves"] = self.cfg.get("cqtd_n_octaves", [9, 9, 9])
self.cfg["cqtd_bins_per_octaves"] = self.cfg.get("cqtd_bins_per_octaves", [24, 36, 48])
self.discriminators = nn.ModuleList(
[
DiscriminatorCQT(
self.cfg,
hop_length=self.cfg["cqtd_hop_lengths"][i],
n_octaves=self.cfg["cqtd_n_octaves"][i],
bins_per_octave=self.cfg["cqtd_bins_per_octaves"][i],
)
for i in range(len(self.cfg["cqtd_hop_lengths"]))
]
)
def forward(
self,
y: torch.Tensor,
y_hat: torch.Tensor
) -> Tuple[List[torch.Tensor], List[torch.Tensor], List[List[torch.Tensor]], List[List[torch.Tensor]]]:
y_d_rs = []
y_d_gs = []
fmap_rs = []
fmap_gs = []
for disc in self.discriminators:
y_d_r, fmap_r = disc(y)
y_d_g, fmap_g = disc(y_hat)
y_d_rs.append(y_d_r)
fmap_rs.append(fmap_r)
y_d_gs.append(y_d_g)
fmap_gs.append(fmap_g)
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
class CombinedDiscriminator(nn.Module):
# wrapper of chaining multiple discrimiantor architectures
# ex: combine mbd and cqtd as a single class
def __init__(
self,
list_discriminator: List[nn.Module]
):
super().__init__()
self.discrimiantor = nn.ModuleList(list_discriminator)
def forward(
self,
y: torch.Tensor,
y_hat: torch.Tensor
) -> Tuple[List[torch.Tensor], List[torch.Tensor], List[List[torch.Tensor]], List[List[torch.Tensor]]]:
y_d_rs = []
y_d_gs = []
fmap_rs = []
fmap_gs = []
for disc in self.discrimiantor:
y_d_r, y_d_g, fmap_r, fmap_g = disc(y, y_hat)
y_d_rs.extend(y_d_r)
fmap_rs.extend(fmap_r)
y_d_gs.extend(y_d_g)
fmap_gs.extend(fmap_g)
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
# Adapted from https://github.com/descriptinc/descript-audio-codec/blob/main/dac/nn/loss.py under the MIT license.
# LICENSE is in incl_licenses directory.
class MultiScaleMelSpectrogramLoss(nn.Module):
"""Compute distance between mel spectrograms. Can be used
in a multi-scale way.
Parameters
----------
n_mels : List[int]
Number of mels per STFT, by default [5, 10, 20, 40, 80, 160, 320],
window_lengths : List[int], optional
Length of each window of each STFT, by default [32, 64, 128, 256, 512, 1024, 2048]
loss_fn : typing.Callable, optional
How to compare each loss, by default nn.L1Loss()
clamp_eps : float, optional
Clamp on the log magnitude, below, by default 1e-5
mag_weight : float, optional
Weight of raw magnitude portion of loss, by default 0.0 (no ampliciation on mag part)
log_weight : float, optional
Weight of log magnitude portion of loss, by default 1.0
pow : float, optional
Power to raise magnitude to before taking log, by default 1.0
weight : float, optional
Weight of this loss, by default 1.0
match_stride : bool, optional
Whether to match the stride of convolutional layers, by default False
Implementation copied from: https://github.com/descriptinc/lyrebird-audiotools/blob/961786aa1a9d628cca0c0486e5885a457fe70c1a/audiotools/metrics/spectral.py
Additional code copied and modified from https://github.com/descriptinc/audiotools/blob/master/audiotools/core/audio_signal.py
"""
def __init__(
self,
sampling_rate: int,
n_mels: List[int] = [5, 10, 20, 40, 80, 160, 320],
window_lengths: List[int] = [32, 64, 128, 256, 512, 1024, 2048],
loss_fn: typing.Callable = nn.L1Loss(),
clamp_eps: float = 1e-5,
mag_weight: float = 0.0,
log_weight: float = 1.0,
pow: float = 1.0,
weight: float = 1.0,
match_stride: bool = False,
mel_fmin: List[float] = [0, 0, 0, 0, 0, 0, 0],
mel_fmax: List[float] = [None, None, None, None, None, None, None],
window_type: str = 'hann',
):
super().__init__()
self.sampling_rate = sampling_rate
STFTParams = namedtuple(
"STFTParams",
["window_length", "hop_length", "window_type", "match_stride"],
)
self.stft_params = [
STFTParams(
window_length=w,
hop_length=w // 4,
match_stride=match_stride,
window_type=window_type,
)
for w in window_lengths
]
self.n_mels = n_mels
self.loss_fn = loss_fn
self.clamp_eps = clamp_eps
self.log_weight = log_weight
self.mag_weight = mag_weight
self.weight = weight
self.mel_fmin = mel_fmin
self.mel_fmax = mel_fmax
self.pow = pow
@staticmethod
@functools.lru_cache(None)
def get_window(
window_type,window_length,
):
return signal.get_window(window_type, window_length)
@staticmethod
@functools.lru_cache(None)
def get_mel_filters(
sr, n_fft, n_mels, fmin, fmax
):
return librosa_mel_fn(sr=sr, n_fft=n_fft, n_mels=n_mels, fmin=fmin, fmax=fmax)
def mel_spectrogram(
self, wav, n_mels, fmin, fmax, window_length, hop_length, match_stride, window_type
):
# mirrors AudioSignal.mel_spectrogram used by BigVGAN-v2 training from:
# https://github.com/descriptinc/audiotools/blob/master/audiotools/core/audio_signal.py
B, C, T = wav.shape
if match_stride:
assert (
hop_length == window_length // 4
), "For match_stride, hop must equal n_fft // 4"
right_pad = math.ceil(T / hop_length) * hop_length - T
pad = (window_length - hop_length) // 2
else:
right_pad = 0
pad = 0
wav = torch.nn.functional.pad(
wav, (pad, pad + right_pad), mode='reflect'
)
window = self.get_window(window_type, window_length)
window = torch.from_numpy(window).to(wav.device).float()
stft = torch.stft(
wav.reshape(-1, T),
n_fft=window_length,
hop_length=hop_length,
window=window,
return_complex=True,
center=True,
)
_, nf, nt = stft.shape
stft = stft.reshape(B, C, nf, nt)
if match_stride:
# Drop first two and last two frames, which are added
# because of padding. Now num_frames * hop_length = num_samples.
stft = stft[..., 2:-2]
magnitude = torch.abs(stft)
nf = magnitude.shape[2]
mel_basis = self.get_mel_filters(self.sampling_rate, 2 * (nf - 1), n_mels, fmin, fmax)
mel_basis = torch.from_numpy(mel_basis).to(wav.device)
mel_spectrogram = magnitude.transpose(2, -1) @ mel_basis.T
mel_spectrogram = mel_spectrogram.transpose(-1, 2)
return mel_spectrogram
def forward(
self,
x: torch.Tensor,
y: torch.Tensor
) -> torch.Tensor:
"""Computes mel loss between an estimate and a reference
signal.
Parameters
----------
x : torch.Tensor
Estimate signal
y : torch.Tensor
Reference signal
Returns
-------
torch.Tensor
Mel loss.
"""
loss = 0.0
for n_mels, fmin, fmax, s in zip(
self.n_mels, self.mel_fmin, self.mel_fmax, self.stft_params
):
kwargs = {
"n_mels": n_mels,
"fmin": fmin,
"fmax": fmax,
"window_length": s.window_length,
"hop_length": s.hop_length,
"match_stride": s.match_stride,
"window_type": s.window_type,
}
x_mels = self.mel_spectrogram(x, **kwargs)
y_mels = self.mel_spectrogram(y, **kwargs)
x_logmels = torch.log(x_mels.clamp(min=self.clamp_eps).pow(self.pow)) / torch.log(torch.tensor(10.0))
y_logmels = torch.log(y_mels.clamp(min=self.clamp_eps).pow(self.pow)) / torch.log(torch.tensor(10.0))
loss += self.log_weight * self.loss_fn(x_logmels, y_logmels)
loss += self.mag_weight * self.loss_fn(x_logmels, y_logmels)
return loss
# loss functions
def feature_loss(
fmap_r: List[List[torch.Tensor]],
fmap_g: List[List[torch.Tensor]]
) -> torch.Tensor:
loss = 0
for dr, dg in zip(fmap_r, fmap_g):
for rl, gl in zip(dr, dg):
loss += torch.mean(torch.abs(rl - gl))
return loss*2 # this equates to lambda=2.0 for the feature matching loss
def discriminator_loss(
disc_real_outputs: List[torch.Tensor],
disc_generated_outputs: List[torch.Tensor]
) -> Tuple[torch.Tensor, List[torch.Tensor], List[torch.Tensor]]:
loss = 0
r_losses = []
g_losses = []
for dr, dg in zip(disc_real_outputs, disc_generated_outputs):
r_loss = torch.mean((1-dr)**2)
g_loss = torch.mean(dg**2)
loss += (r_loss + g_loss)
r_losses.append(r_loss.item())
g_losses.append(g_loss.item())
return loss, r_losses, g_losses
def generator_loss(
disc_outputs: List[torch.Tensor]
) -> Tuple[torch.Tensor, List[torch.Tensor]]:
loss = 0
gen_losses = []
for dg in disc_outputs:
l = torch.mean((1-dg)**2)
gen_losses.append(l)
loss += l
return loss, gen_losses |