File size: 7,424 Bytes
6c29834
 
 
 
 
 
 
 
 
 
9545ebe
6c29834
 
19a16d0
4f8acba
6c29834
 
 
 
 
 
 
 
 
19a16d0
6c29834
 
 
d5bb818
 
 
 
 
 
6c29834
19a16d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c29834
 
 
 
 
 
19a16d0
6c29834
 
 
 
 
 
 
19a16d0
6c29834
 
 
 
 
 
 
 
 
39a774c
6c29834
 
 
 
 
 
 
 
 
 
39a774c
6c29834
 
 
19a16d0
6c29834
 
 
4d50073
d745f82
4f8acba
19a16d0
4f8acba
6c29834
4f8acba
 
39a774c
 
19a16d0
4f8acba
 
19a16d0
4f8acba
d745f82
 
19a16d0
4f8acba
 
 
 
 
 
 
 
 
 
 
 
19a16d0
4f8acba
 
 
19a16d0
4f8acba
 
19a16d0
18bffde
 
 
 
19a16d0
 
 
 
4f8acba
 
19a16d0
6c29834
 
 
d5bb818
6c29834
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d5bb818
6c29834
 
 
 
 
 
 
 
 
 
 
d745f82
 
 
 
 
 
 
 
 
 
 
 
 
 
19a16d0
6c29834
 
 
 
 
 
 
 
18bffde
19a16d0
6c29834
 
d745f82
6c29834
db4e824
19a16d0
ca8a1da
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
import os
import torch
from diffusers import DDIMScheduler,DiffusionPipeline
import torch.nn.functional as F
import cv2
from torchvision.utils import save_image
from diffusers.utils import load_image
from torchvision.transforms.functional import to_tensor, gaussian_blur
from matplotlib import pyplot as plt
import gradio as gr
import spaces
from gradio_imageslider import ImageSlider
from torchvision.transforms.functional import to_pil_image, to_tensor
from PIL import ImageFilter, Image
import traceback


def preprocess_image(input_image, device):
    image = to_tensor(input_image)
    image = image.unsqueeze_(0).float() * 2 - 1 # [0,1] --> [-1,1]
    if image.shape[1] != 3:
        image = image.expand(-1, 3, -1, -1)
    image = F.interpolate(image, (1024, 1024))
    image = image.to(dtype).to(device)

    return image


def load_description(fp):
    with open(fp, 'r', encoding='utf-8') as f:
        content = f.read()
    return content


def preprocess_mask(input_mask, device):
    # Split the channels
    r, g, b, alpha = input_mask.split()

    # Create a new image where:
    # - Black areas (where RGB = 0) become white (255).
    # - Transparent areas (where alpha = 0) become black (0).
    new_mask = Image.new("L", input_mask.size)

    for x in range(input_mask.width):
        for y in range(input_mask.height):
            if alpha.getpixel((x, y)) == 0:  # Transparent pixel
                new_mask.putpixel((x, y), 0)  # Set to black
            else:  # Non-transparent pixel (originally black in the mask)
                new_mask.putpixel((x, y), 255)  # Set to white
    
    mask = to_tensor(new_mask.convert('L'))
    mask = mask.unsqueeze_(0).float()  # 0 or 1
    mask = F.interpolate(mask, (1024, 1024))
    mask = gaussian_blur(mask, kernel_size=(77, 77))
    mask[mask < 0.1] = 0
    mask[mask >= 0.1] = 1
    mask = mask.to(dtype).to(device)

    return mask


def make_redder(img, mask, increase_factor=0.4):
    img_redder = img.clone()
    mask_expanded = mask.expand_as(img)
    img_redder[0][mask_expanded[0] == 1] = torch.clamp(img_redder[0][mask_expanded[0] == 1] + increase_factor, 0, 1)

    return img_redder


# Model loading parameters
is_cpu_offload_enabled = False
is_attention_slicing_enabled = True

# Load model
dtype = torch.float16
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
scheduler = DDIMScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", clip_sample=False, set_alpha_to_one=False)

model_path = "stabilityai/stable-diffusion-xl-base-1.0"
pipeline = DiffusionPipeline.from_pretrained(
    model_path,
    custom_pipeline="pipeline_stable_diffusion_xl_attentive_eraser.py",
    scheduler=scheduler,
    variant="fp16",
    use_safetensors=True,
    torch_dtype=dtype,
).to(device)

if is_attention_slicing_enabled:
    pipeline.enable_attention_slicing()

if is_cpu_offload_enabled:
    pipeline.enable_model_cpu_offload()

@spaces.GPU
def remove(gradio_image, rm_guidance_scale=9, num_inference_steps=50, seed=42, strength=0.8, similarity_suppression_steps=9, similarity_suppression_scale=0.3):
    try:
        generator = torch.Generator('cuda').manual_seed(seed)
        prompt = "" # Set prompt to null

        source_image_pure = gradio_image["background"]
        mask_image_pure = gradio_image["layers"][0]
        source_image = preprocess_image(source_image_pure.convert('RGB'), device)
        mask = preprocess_mask(mask_image_pure, device)

        START_STEP = 0 # AAS start step
        END_STEP = int(strength * num_inference_steps) # AAS end step
        LAYER = 34 # 0~23down,24~33mid,34~69up /AAS start layer
        END_LAYER = 70 # AAS end layer
        ss_steps = similarity_suppression_steps # similarity suppression steps
        ss_scale = similarity_suppression_scale # similarity suppression scale

        image = pipeline(
            prompt=prompt,
            image=source_image,
            mask_image=mask,
            height=1024,
            width=1024,
            AAS=True, # enable AAS
            strength=strength, # inpainting strength
            rm_guidance_scale=rm_guidance_scale, # removal guidance scale
            ss_steps = ss_steps, # similarity suppression steps
            ss_scale = ss_scale, # similarity suppression scale
            AAS_start_step=START_STEP, # AAS start step
            AAS_start_layer=LAYER, # AAS start layer
            AAS_end_layer=END_LAYER, # AAS end layer
            num_inference_steps=num_inference_steps, # number of inference steps # AAS_end_step = int(strength*num_inference_steps)
            generator=generator,
            guidance_scale=1
        ).images[0]
        print('Inferece: DONE.')

        pil_mask = to_pil_image(mask.squeeze(0))
        pil_mask_blurred = pil_mask.filter(ImageFilter.GaussianBlur(radius=15))
        mask_blurred = to_tensor(pil_mask_blurred).unsqueeze_(0).to(mask.device)
        mask_f = 1-(1 - mask) * (1 - mask_blurred)

        # image_1 = image.unsqueeze(0)

        return source_image_pure, pil_mask, image
    except:
        print(traceback.format_exc())


title = """<h1 align="center">Object Remove</h1>"""
with gr.Blocks() as demo:
    gr.HTML(load_description("assets/title.md"))
    with gr.Row():
        with gr.Column():
            with gr.Accordion("Advanced Options", open=False):
                guidance_scale = gr.Slider(
                    minimum=1,
                    maximum=20,
                    value=9,
                    step=0.1,
                    label="Guidance Scale"
                )
                num_steps = gr.Slider(
                    minimum=5,
                    maximum=100,
                    value=50,
                    step=1,
                    label="Steps"
                )
                seed = gr.Slider(
                    minimum=42,
                    maximum=999999,
                    value=42,
                    step=1,
                    label="Seed"
                )
                strength = gr.Slider(
                    minimum=0,
                    maximum=1,
                    value=0.8,
                    step=0.1,
                    label="Strength"
                )
                similarity_suppression_steps = gr.Slider(
                    minimum=0,
                    maximum=10,
                    value=9,
                    step=1,
                    label="Similarity Suppression Steps"
                )
                similarity_suppression_scale = gr.Slider(
                    minimum=0,
                    maximum=1,
                    value=0.3,
                    step=0.1,
                    label="Similarity Suppression Scale"
                )

            input_image = gr.ImageMask(
                type="pil", label="Input Image",crop_size=(1200,1200), layers=False
            )
        with gr.Column():
            with gr.Row():
                with gr.Column():
                    run_button = gr.Button("Generate")

            result = gr.Gallery(label="Generated images", show_label=False, elem_id="gallery", columns=[3], rows=[1], object_fit="contain", height="auto")

    run_button.click(
        fn=remove,
        inputs=[input_image, guidance_scale, num_steps, seed, strength, similarity_suppression_steps, similarity_suppression_scale],
        outputs=result,
    )

demo.queue(max_size=12).launch(share=False)