File size: 5,482 Bytes
a3e4497
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import collections
from datetime import datetime

from datasets import DatasetDict, load_dataset
import numpy as np

datasets = {
    "stars": load_dataset("open-source-metrics/stars").sort('dates'),
    "issues": load_dataset("open-source-metrics/issues").sort('dates'),
    "pip": load_dataset("open-source-metrics/pip").sort('day')
}

val = 0


def _range(e):
    global val
    e['range'] = val
    val += 1

    current_date = datetime.strptime(e['dates'], "%Y-%m-%dT%H:%M:%SZ")
    first_date = datetime.fromtimestamp(1)
    week = abs(current_date - first_date).days // 7
    e['week'] = week

    return e


def _ignore_org_members(e):
    global val
    e['range_non_org'] = val

    if e['type']['authorAssociation'] != 'MEMBER':
        val += 1

    return e

stars = {}
for k, v in datasets['stars'].items():
    stars[k] = v.map(_range)
    val = 0

issues = {}
for k, v in datasets['issues'].items():
    issues[k] = v.map(_range)
    val = 0
    issues[k] = issues[k].map(_ignore_org_members)
    val = 0

datasets['stars'] = DatasetDict(**stars)
datasets['issues'] = DatasetDict(**issues)


def link_values(library_names, returned_values):
    previous_values = {library_name: None for library_name in library_names}
    for library_name in library_names:
        for i in returned_values.keys():
            if library_name not in returned_values[i]:
                returned_values[i][library_name] = previous_values[library_name]
            else:
                previous_values[library_name] = returned_values[i][library_name]

    return returned_values


def running_mean(x, N, total_length=-1):
    cumsum = np.cumsum(np.insert(x, 0, 0))
    to_pad = max(total_length - len(cumsum), 0)
    return np.pad(cumsum[N:] - cumsum[:-N], (to_pad, 0)) / float(N)


def retrieve_pip_installs(library_names, cumulated):

    if cumulated:
        returned_values = {}
        for library_name in library_names:
            for i in datasets['pip'][library_name]:
                if i['day'] in returned_values:
                    returned_values[i['day']]['Cumulated'] += i['num_downloads']
                else:
                    returned_values[i['day']] = {'Cumulated': i['num_downloads']}

        library_names = ['Cumulated']

    else:
        returned_values = {}
        for library_name in library_names:
            for i in datasets['pip'][library_name]:
                if i['day'] in returned_values:
                    returned_values[i['day']][library_name] = i['num_downloads']
                else:
                    returned_values[i['day']] = {library_name: i['num_downloads']}

        for library_name in library_names:
            for i in returned_values.keys():
                if library_name not in returned_values[i]:
                    returned_values[i][library_name] = None

    returned_values = collections.OrderedDict(sorted(returned_values.items()))
    output = {l: [k[l] for k in returned_values.values()] for l in library_names}
    output['day'] = list(returned_values.keys())
    return output


def retrieve_stars(libraries, week_over_week):
    returned_values = {}
    dataset_dict = datasets['stars']

    for library_name in libraries:
        dataset = dataset_dict[library_name]

        last_value = 0
        last_week = dataset[0]['week']
        for i in dataset:
            if week_over_week and last_week == i['week']:
                continue
            if i['dates'] in returned_values:
                returned_values[i['dates']][library_name] = i['range'] - last_value
            else:
                returned_values[i['dates']] = {library_name: i['range'] - last_value}

            last_value = i['range'] if week_over_week else 0
            last_week = i['week']

    returned_values = collections.OrderedDict(sorted(returned_values.items()))
    returned_values = link_values(libraries, returned_values)
    output = {l: [k[l] for k in returned_values.values()][::-1] for l in libraries}
    output['day'] = list(returned_values.keys())[::-1]

    # Trim down to a smaller number of points.
    output = {k: [v for i, v in enumerate(value) if i % int(len(value) / 100) == 0] for k, value in output.items()}
    return output


def retrieve_issues(libraries, exclude_org_members, week_over_week):

    returned_values = {}
    dataset_dict = datasets['issues']
    range_id = 'range' if not exclude_org_members else 'range_non_org'

    for library_name in libraries:
        dataset = dataset_dict[library_name]

        last_value = 0
        last_week = dataset[0]['week']
        for i in dataset:
            if week_over_week and last_week == i['week']:
                continue

            if i['dates'] in returned_values:
                returned_values[i['dates']][library_name] = i[range_id] - last_value
            else:
                returned_values[i['dates']] = {library_name: i[range_id] - last_value}

            last_value = i[range_id] if week_over_week else 0
            last_week = i['week']

    returned_values = collections.OrderedDict(sorted(returned_values.items()))
    returned_values = link_values(libraries, returned_values)
    output = {l: [k[l] for k in returned_values.values()][::-1] for l in libraries}
    output['day'] = list(returned_values.keys())[::-1]

    # Trim down to a smaller number of points.
    output = {
        k: [v for i, v in enumerate(value) if i % int(len(value) / 100) == 0] for k, value in output.items()
    }
    return output